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INTRODUCTION

The laboratory experiments is one phase of a course of study in

physics. It is evident, that there is a greater chance of a student’s

understanding a topic if it is put before him in more than one way.

The course is arranged so that a student meets a given topic in a

variety of ways: in reading assignments in the text, in demonstra-

tion lectures, in supplementary notes issued to students, in recita-

tion and problem drill in problem sessions, in both the study and

the performance of laboratory experiments, in homework problem

sets, and in quizzes and examinations. These various types of pre-

sentation are synchronized so that, it is hoped, their impact on

the student will have a maximum effectiveness.

The laboratory experiments can be an exciting part of the course,

or it can be drudgery, depending upon your attitude toward it. If

you regard it merely as an impediment to your getting through the

course, probably you will not enjoy it, and furthermore, probably

you will derive very little benefit from it. On the other hand, if

you approach the laboratory with the thought that it is an oppor-

tunity to learn, and with a desire to make the most out of it, then

it is almost certain you will find the time you spend on it both

profitable and interesting.

Most of the principles of physics were discovered by men using

equipment no better than yours in fact, most of it was not so

good. We hope that you will be able to do some independent

thinking about physical principles in the laboratory and that with

the equipment in front of you, you will be able to try out your

own ideas and find out things for yourself.
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Chapter 1

MECHANICS AND THERMODYNAMICS

LABORATORY EXPERIMENT 1.4

MOMENT OF INERTIA OF A FLYWHEEL

Purpose of the Experiment: to estimate the friction force

in bearings and the moment of inertia of a flywheel.

Equipment and Accessories: flywheel, block on a thin flex-

ible nonstretchable rope, meter stick, stopwatch, vernier caliper.

Basic Methodology. Inertial lift of a hanging block is lower

than its initial height because of the resistance in bearings. Av-

erage resistance force can be evaluated on the base of the energy

conservation law from the weight of the block and corresponding

heights. The highest velocity of the block can be determined from

its fall time. Angular velocity of the flywheel is related to the

velocity of the block. Moment of inertia of the flywheel can be

determined on the base of the energy conservation law.

Recommended Pre-lab Reading: [1] 9.4, 10.2; [2] 9.2, 9.3;

[3] 10.4–10.7.

Pre-lab Questions

1. What is the SI unit for the moment of inertia?

2. Provide a definition of a torque.

3. To maximize the moment of inertia while minimizing its weight,

what shape and distribution of mass should a flywheel have?
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Description of the Equipment

To determine moment of inertia of a flywheel and friction force

in bearings, the installation shown in Fig. 1.4.i is used. A flywheel

1 of an unknown moment of inertia 𝐼 is mounted on a horizontal

axle 2. A light rope wrapped around the axle supports a block 3

of mass 𝑚. The block does not touch the floor in the equilibrium

position (rope totally unwind).

3
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Figure 1.4.i

Theoretical Introduction

A block 𝑚 is released with no initial velocity at a height ℎ1

above its equilibrium position. In this case the potential energy

of the block is 𝐸𝑃1 = 𝑚𝑔ℎ1. The zero potential energy is assigned

to the equilibrium position.

As the block falls, the rope unwinds turning the flywheel. The

lowest position of the block corresponds to its highest kinetic en-
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ergy. Since the rope is considered nonstretchable, the kinetic en-

ergy of the flywheel is also the highest. Due to the rotational

inertial motion of the flywheel, the rope is wrapped back. As a

result, block is lifted to a height ℎ2 < ℎ1. (Dashed line in the

Fig. 1.4.i.) At this instant, the potential energy of the block is

equal 𝐸𝑃2 = 𝑚𝑔ℎ2.

The decrease of the potential energy is equal to the work 𝑊𝑓

done by the friction force 𝐹𝑓 . In this case the energy conservation

law would become

𝐸𝑃1 = 𝐸𝑃2 +𝑊𝑓 , (1.4.1)

where 𝑊𝑓 = 𝐹𝑓(ℎ1 + ℎ2). In the last expression, we take into

account that the total path of the block ℎ1 + ℎ2 is the same as a

displacement of the rim’s points against the friction force.

The equation (1.4.3) can be rewritten in terms of heights by

substituting expressions for potential energies 𝐸𝑃1 and 𝐸𝑃2 in it

𝑚𝑔ℎ1 −𝑚𝑔ℎ2 = 𝐹𝑓(ℎ1 + ℎ2).

Previous equation allows us to express the average value of the

friction force:

𝐹𝑓 = 𝑚𝑔
ℎ1 − ℎ2

ℎ1 + ℎ2
. (1.4.2)

In the lowest position, the block’s initial potential energy 𝐸𝑃1 is

converted into the kinetic energy of the system and the work done

by a friction force. Total kinetic energy of the system consists of

the kinetic energy of the translation motion 1
2𝑚𝑣2 of the block and

the kinetic energy of rotation motion of the flywheel 1
2𝐽𝜔

2. The

work done by the friction force at the way ℎ1 is

𝑊𝑓 = 𝐹𝑓 · ℎ1.

According to the energy conservation law

𝑚𝑔ℎ1 =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 + 𝐹𝑓 · ℎ1.
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Previous equation is used to find an expression for a moment of

inertia of the flywheel

𝐼 =
2(𝑚𝑔 − 𝐹𝑓) · ℎ1 −𝑚𝑣2

𝜔2
. (1.4.3)

Since the block falls under the influence of constant forces, its

motion is uniformly accelerated with acceleration 𝑎. Taking into

account known from the high-school equation ℎ1 = 1
2𝑎𝑡

2 (where

𝑡 is a falling time of the block from height ℎ1), its acceleration

would be 𝑎 = 2ℎ1/𝑡
2. Then, the velocity of the block in the lowest

position is

𝑣 = 𝑎𝑡 =
2ℎ1

𝑡
.

The speed of the falling block 𝑣 must be equal to the tangential

speed at the outer surface of the axle. Thus, the angular velocity

of the flywheel 𝜔 is related to 𝑣 as follows 𝑣 = 𝜔𝑟 , where 𝑟 is the

radius of axle.

After substituting the expression for a friction force 𝐹𝑓 from

Eq. (1.4.2) into Eq. (1.4.3), the final expression for the moment of

inertia of the flywheel can be obtained:

𝐼 = 𝑚𝑟2
[︂
𝑔𝑡2

ℎ2

ℎ1(ℎ1 + ℎ2)
− 1

]︂
. (1.4.4)

Step-by-step Procedure of the Experiment

1. Find an equilibrium position of a block 𝑚 above the floor. It

corresponds to the situation when a load hangs freely on a

totally unwind rope. Mass of the load is given on it.
2. Wind up the rope tightly on the axle so that the block is

lifted to a height ℎ1 with respect to its initial position. The

magnitude of ℎ1 is provided by a lab instructor.
3. Release the axle and measure the fall time 𝑡 of the block from

height ℎ1 to its initial position.

9



Table 1.4.i

# ℎ1, m ℎ2, m ⟨ℎ2⟩, m 𝑡, s ⟨𝑡⟩, s ⟨𝑟⟩, m 𝐹𝑓 , N 𝐼 , kg·m2

1

2

3

4. Measure the height ℎ2 (above its initial position) of the inertial

lift of the block.
5. Repeat steps from 2 through 4 several (3–5) times. Use the

same ℎ1 for all efforts.
6. Measure the diameter 𝑑 of the axle 2 with a vainer caliper in

three different directions. Find an average value of the axle

radius ⟨𝑟⟩.
7. Record all data to Table 1.4.i.
8. Calculate the average friction force according to Eq. (1.4.2).
9. Apply Eq. (1.4.4) to compute the moment inertia of the fly-

wheel.
10. Analyze obtained results and make conclusions.

After-lab Questions

Case 1.
1. Write down two forms of the basic equation of rotational dy-

namics.
2. What law is used to derive the basic equation of moment of

inertia in this experiment?
3. Based on your experimental data, estimate the highest possi-

ble mass of the block that would not cause a rotational motion

of the flywheel.
4. Problem. Flywheel is rotated with a constant angular veloc-

ity by an engine. The power of the engine was turned off.

Once started, the flywheel made 𝑁 = 120 revolutions during
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𝑡 = 30 s, and stopped. The moment of inertia of the flywheel

equals 𝐼 = 0.3 kg·m2. The angular acceleration of the flywheel

is constant after engine has stopped. Find the power of the

engine when a flywheel rotates uniformly.
Answer: 𝑃 = 25 W.

Case 2.

1. Write down formula for calculating moment of inertia of the

particle point, disk, and ring.

2. Derive the expression for calculating friction force in this ex-

periment.

3. If the polar ice caps were to completely melt due to global

warming, the melted ice would redistribute itself over the

earth. How would this change the length of a day (the time

needed for the Earth to make one revolution about its axis)?

4. Problem. With what force 𝐹 should you press down the brake

block to the wheel which does 𝑓 = 30 rev/s for it to stop in

𝑡 = 20 s? The wheel weights is 10 kg. The weight is dis-

tributed over the rim. The diameter 𝑑 of the wheel is equal to

20 cm. The friction coefficient between the rim and the block

is 𝜇 = 0.5.
Answer: 𝐹 = 18.84 N.

Case 3.

1. Give a definition of angular momentum of a body.

2. Derive the expression for calculating moment of inertia of a

flywheel in this experiment.

3. You apply equal torques to two different cylinders, one of

which has a moment of inertia twice larger than the other.

Each cylinder is initially at rest. After one complete rotation,

which cylinder has the greater kinetic energy?

4. Problem. A wheel with moment of inertia 𝐼 = 245 kg·m2 is

rotating at 𝑓 = 20 rev/s. It comes to rest in 𝑡 = 1 min
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if the engine that supports the rotation is turned off. Find

the torque of friction force 𝜏𝑓 and number of turnovers 𝑁 the

wheel had done before it stopped?
Answer: 𝜏𝑓 = 513 N·m, 𝑁 = 600.

LABORATORY EXPERIMENT 1.7

MEASURING MOMENT OF INERTIA BY USING A

TRIFILAR PENDULUM

Purpose of the Experiment: to measure moment of inertia

of a body and to check the parallel-axis theorem.

Equipment and Accessories: trifilar pendulum, stop watch,

vernier caliper, investigated bodies.

Basic Methodology. Period of oscillation of a trifilar pendu-

lum depends on the dimensions of the pendulum, mass of the

oscillating system, and its moment of inertia. Thus, moment of

inertia can be determined by measuring period of oscillation of a

trifilar pendulum.

Recommended Pre-lab Reading: [1] 9.5, 10.2; [2] 9.2–9.4;

[3] 10.4–10.7.

Pre-lab Questions
1. What is the SI unit for the moment of inertia?
2. Formulate the parallel-axis theorem.
3. Find the moment of inertia of a hoop (a thin-walled hollow

ring) with the mass 𝑀 and radius 𝑅 about an axis perpen-

dicular to the plane of the hoop at an edge.

Theoretical Introduction

Trifilar pendulum consists of a circular platform of mass 𝑚0

and radius 𝑅 (see Fig. 1.7.i). The platform is suspended to 3
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Figure 1.7.i

symmetrical arrangement strings of length 𝐿. These strings are

symmetrically fixed along the edges of the platform with the lower

radius 𝑟 in the top. Values 𝐿, 𝑅 and 𝑟 are shown in the equipment.

Top view of the pendulum is shown in Fig. 1.7.ii. If the lower

platform is twisted on a certain angle 𝜑 about its vertical axis, then

the horizontal component of a tension force F⃗𝑇ℎ of every string

would create a restoring torque 𝜏 on the platform. The vector of

this torque is parallel to the axis of rotation and has a direction

opposite to the direction of the twisting angle. According to the

definition, the restoring torque is calculated as follows

�⃗� =
∑︁

R⃗× F⃗𝑇ℎ.

Here R⃗ is a position vector of a knot B in a lower platform with

respect to the its center O (see Fig. 1.7.ii). The section AB is

a projection of a string on a horizontal plane. A is a projection
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of the knot on the fixed platform onto the lower platform. r⃗ is a

position vector of a point A.

The horizontal component of a tension force vector F⃗𝑇ℎ is di-

rected along the section AB. If the length of this section is 𝑙, then

F⃗𝑇ℎ = 𝐹𝑇ℎ
l⃗

𝑙
,

where 𝐹𝑇ℎ is a magnitude of this horizontal component.

Since l⃗ = r⃗ − R⃗, torque exerted on a lower platform by one

string can be simplified to

�⃗�1 = R⃗× r⃗− R⃗

𝑙
𝐹𝑇ℎ = −r⃗× R⃗

𝑙
𝐹𝑇ℎ.

Projection of the torque onto an axis of rotation is

𝜏1 = −𝑟𝑅

𝑙
𝐹𝑇ℎ sin𝜑. (1.7.1)
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To find the value of the horizontal component of the tension

force let’s, consider the cross section of a pendulum by a vertical

plane that contains this string (see Fig. 1.7.iii). If 𝐹𝑇 is a magni-

tude of the tension force that acts along the string, its horizontal

projection 𝐹𝑇ℎ can be calculated by taking into account the geo-

metrical dimensions of the pendulum.

𝐹𝑇ℎ = 𝐹𝑇
𝑙

𝐿
, (1.7.2)

where 𝐿 is a length of the string. The magnitude of a tension force

can be expressed via its vertical component 𝐹𝑇𝑣.

𝐹𝑇 =
𝐿

𝐻
𝐹𝑇𝑣, (1.7.3)

where 𝐻 is a distance between platforms.

If the length of the string 𝐿 and the radii of both rotating 𝑅

and fixed 𝑟 platforms are known, the height of the pendulum 𝐻 in

the equilibrium can be calculated with the Pythagorean theorem

𝐻 =
√︀

𝐿2 − (𝑅− 𝑟)2. (1.7.4)

If the angle of twist is small, the vertical component of a tension

force 𝐹𝑇𝑣 is approximately equal to its value in the equilibrium.

The latter one is equal to one third of the weight 𝑚𝑔 of the lower

platform (see Fig. 1.7.iii). Thus,

𝐹𝑇𝑣 =
1

3
𝑚𝑔.

Consequently substituting this relation into the equations (1.7.3)

and (1.7.2) and then in (1.7.1) we can express the magnitude of

the torque 𝜏1 exerted by a single string on the lower platform via

measurable values:

𝜏1 = −1

3

𝑚𝑔𝑅𝑟

𝐻
sin𝜑.
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The total torque exerted by all three strings is 3 times bigger.

According to the main equation of the rotational dynamics,

𝑑2𝜑

𝑑𝑡2
𝐼 = 𝜏 = −𝑚𝑔𝑅𝑟

𝐻
sin𝜑 ≈ −𝑚𝑔𝑅𝑟

𝐻
𝜑.

In this expression, we took into account that for small angles 𝜑

its sin is approximately equal to the angle expressed in radians.

Dividing previous equation by the moment of inertia 𝐼 , we ob-

tain a standard differential equation of the harmonic oscillations:

𝑑2𝜑

𝑑𝑡2
= −𝜔2𝜑 = −𝑚𝑔𝑅𝑟

𝐼𝐻
𝜑.

Thus, the moment of inertia 𝐼 of the trifilar pendulum can be

expressed through the oscillation frequency 𝜔

𝐼 =
𝑚𝑔𝑅𝑟

𝜔2𝐻
=

𝑚𝑔𝑅𝑟

4𝜋2𝐻
𝑇 2, (1.7.5)
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where 𝑇 is a period of oscillations. Relation 𝑇 = 2𝜋/𝜔 was used

in the previous equality.

Moment of inertia of a symmetrical body can be measured with

the trifilar pendulum if the axis of rotation of the pendulum passes

through the center of mass of the body. If a body placed onto a

lower platform participates in the oscillations, then the period of

oscillations of the system is different from the period of oscillations

of an empty platform. Moment of inertia of a system can be

determined according to Eq. (1.7.5) if the total mass of the system

is used. To find the moment of inertia of the body, one should

employ an additivity properties of it. Thus, if 𝐼0 is a moment of

inertia of an empty platform and 𝐼1 is a moment of inertia of the

platform with a body, then the moment of inertia of the body 𝐼𝐶
about its center of mass is computed as:

𝐼𝐶 = 𝐼1 − 𝐼0. (1.7.6)
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To find the moment of inertia of the body about an arbitrary

axis that does not pass through its center of mass, two identical

bodies can be placed symmetrically onto the lower platform (see

Fig. 1.7.iv). The moment of inertia of the whole system 𝐼2 can

be determined with the formula (1.7.5). Then the moment of

inertia of two bodies should be calculated with an equation (1.7.6).

To find the moment of inertia of a single body, only half of the

previous result is required:

𝐼𝑒𝑥𝑝𝐴 =
𝐼2 − 𝐼0

2
. (1.7.7)

If the distance between the axes of oscillations in two cases is 𝑎

(see Fig. 1.7.iv) and the mass of the body under investigation is

𝑚1, the parallel-axis theorem should be valid:

𝐼 𝑡ℎ𝐴 = 𝐼𝐶 +𝑚1𝑎
2, (1.7.8)

where 𝐼 𝑡ℎ𝐴 is the moment of inertia of the body about an arbitrary

axis 𝐴𝐴′ and 𝐼𝐶 is the moment of inertia of the same body about

the axis 𝐶𝐶 ′ parallel to 𝐴𝐴′ and passing through the center of

the mass of the body.

Step-by-step Procedure of the Experiment

1. Measure the thickness 𝑑 of the lower platform by a vernier

caliper in several places and find an average value ⟨𝑑⟩.
2. Measure the oscillation period 𝑇0 of an empty platform by

timing about 𝑁 = 30 small oscillations.
3. Place one of the investigated disks of mass 𝑚1 at the center of

the platform and measure the oscillation period 𝑇1 with one

body on it.
4. Place both disks on the platform so that they would touch

each other at the center of the platform (see Fig. 1.7.iv) and

measure the oscillation period 𝑇2 of the trifilar pendulum with

two bodies on it.
18



Table 1.7.i

# 𝑚, kg 𝑁 𝑡, s 𝑇 , s 𝐼 , kg·m2

0

1

2

5. Measure the distance 𝑎 from the symmetry axis of a disk to

the axis of the lower platform by a vernier caliper.

6. Compute the mass 𝑚0 of the rotating platform according to

the equation𝑚0 = 𝜌𝑉 = 𝜌𝜋𝑅2⟨𝑑⟩, where 𝜌 is the mass density
of the lower platform.

7. Estimate the distance 𝐻 between platforms in equilibrium

according to the Pythagorean theorem (1.7.4). Compare ob-

tained value with the length of the string.

8. Calculate the moment of inertia of the empty platform with

Eq. (1.7.5). Use𝑚0 for mass and 𝑇0 for a period of oscillations.

9. Compute the moment of inertia of the platform with one body

according to Eq. (1.7.5). Use 𝑚0+𝑚1 for mass of the pendu-

lum and 𝑇1 for a period of oscillations.

10. Utilize Eq. (1.7.5) to calculate the moment of inertia of the

platform with two bodies. In this case, the mass of the oscil-

lating object is 𝑚0 + 2𝑚1, and 𝑇2 is a period of oscillations.

11. Record all data to Table 1.7.i.

12. Use Eq. (1.7.6) to find the moment of inertia of a single disk

about the axis passing through its center of mass 𝐼𝐶 according

to additivity properties of the moment of inertia.

13. Determine the moment of inertia of a single disk about the axis

passing through its edge 𝐼𝑒𝑥𝑝𝐴 taking into account symmetry

of the oscillating system with the help of Eq. (1.7.7).

14. Calculate theoretical value of the moment of inertia of the disk

about an axis passing through its edge 𝐼 𝑡ℎ𝐴 according to the
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parallel-axis theorem (1.7.8). Compare your result with the

experimental value 𝐼𝑒𝑥𝑝𝐴 from the previous step.
15. Analise obtained results and make conclusions.

After-lab Questions

Case 1.
1. Formulate the angular momentum conservation law. Make

examples.
2. Derive an expression for a period of oscillations of the trifilar

pendulum.
3. A section of a hollow pipe and a solid cylinder of the same

radius, mass, and length roll from the same height from the

sloped plane. Which object would reach the bottom of the

slope faster?
4. Problem. A braking wheel reduce the frequency of rotation

uniformly from 𝑓1 = 300 rpm to 𝑓2 = 180 rpm at the time

𝑡 = 1 min. The moment of inertia of the wheel 𝐼 = 2 kg·m2.

Find the retarding torque 𝜏 ; the braking work𝑊 ; the number

of the revolutions 𝑁 of the wheel.
Answer: 𝜏 = 0.42 N·m, 𝑁 = 240, 𝑊 = 630 J.

Case 2.
1. Formulate the parallel-axis theorem.
2. Estimate theoretically the period of oscillation of the empty

platform in your experiment. Compare the result with your

experimental data. Assume the platform is a uniform disk of

mass 𝑚0 and radius 𝑅.
3. Find the moment of inertia of a uniform disk of mass 𝑀 and

radius 𝑅 about an axis perpendicular to the disk plane at an

edge.
4. Problem. Two little bullets of the masses 𝑚1 = 40 g and

𝑚2 = 120 g are connected by a weightless rod 𝑙 = 20 cm
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long. The system rotates about the axis which is perpendicu-

lar to the rod and passes through the center of inertia of the

system. Determine the angular momentum 𝐿 of the system

about axis of rotation. The rotation frequency 𝑓 = 3 s−1.
Answer: 𝐿 = 2.26 · 10−2 kg·m2/s.

Case 3.
1. Write down an expression for kinetic energy of the rotating

body.
2. Would the period of oscillations of the trifilar pendulum with

two disks change in comparison to what you have measured if

both disks are placed in the center of the platform one on the

top of other?
3. Use the parallel-axis theorem to show that the moments of

inertia of a uniform rod about the axis at its center and its

edge are consistent with each other.
4. Problem. In a homogeneous disk of the mass 𝑚1 = 1 kg and

radius 𝑅 = 30 cm, a round aperture is cut of the diameter

𝑑 = 20 cm. Its center is at the distance 𝑙 = 15 cm from the

axis of the disk. Find the moment of inertia about the axis

which passes perpendicular to the surface of the disc through

its center.
Answer: 𝐼 = 4.2 · 10−2 kg·m2.

LABORATORY EXPERIMENT 1.24

DETERMINATION OF THE COEFFICIENT OF A FLUID

INTERNAL FRICTION WITH THE STOKES’S METHOD

Purpose of the Experiment: to investigate phenomenon of

internal friction in liquids and to determine the viscosity coeffi-

cient.

Equipment and Accessories: tall glass column filled of liq-

uid, small lead and steel spheres, micrometer, stopwatch, ruler.
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Basic Methodology. An object moving through a liquid ex-

periences a force in the direction opposite to its motion. Terminal

velocity is achieved when the drag force is equal in magnitude

but opposite in direction to the force propelling the object. By

measuring this velocity, viscosity coefficient can be determined.

Recommended Pre-lab Reading: [1] 5.3, 14.3, 14.6; [2] 5.3,

16.4, 19.7; [3] 5.4, 6.4, 14.4.

Pre-lab Questions

1. What is the SI unit for the dynamic viscosity coefficient? Ex-

press it via basic SI units.
2. Formulate the Stokes’s law.
3. Formulate the Newton’s second law.

Theoretical Introduction

Viscosity is a property of the fluid that indicates the resistance

to shear within a fluid. A solid body experiences less resistance if

the fluid has a low viscosity. SI unit of dynamic viscosity coefficient

is Pa·s.
Viscous resistance of a fluid arises from shear in the velocity

profile of flow. If two flat plates have fluid between them, a force

is required to move the top one at a constant speed in relation

to the bottom one. The force is proportional to the area of the

plate and (if the fluid is characterized by a Newtonian viscosity

coefficient 𝜂) to the relative velocity and inverse distance between

plates, i.e., to the velocity gradient 𝑑𝑣𝑧
𝑑𝑥 .

According to Stokes’s law, the magnitude of the resistance force

𝐹𝑑 or the drag force experienced by a sphere of diameter 𝑑 moving

in a quiescent viscous fluid of viscosity 𝜂 with a constant velocity

𝑣 is governed by the following equation:

𝐹𝑑 = 3𝜋𝜂𝑣𝑑. (1.24.1)
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Let’s consider motion of a solid sphere of mass 𝑚 with the mass

density 𝜌𝑠 in a fluid with the density 𝜌𝑓 . A sphere starting from

rest in a liquid will experience gravity F⃗𝑔 and buoyancy F⃗𝑏 forces.

Once it begins to move, the drag force F⃗𝑑 will act to slow its

acceleration (Fig. 1.24.i).

F
g

F
d

F
b

h

b

a

Figure 1.24.i

According to the Newton’s second law

𝑚
𝑑v⃗

𝑑𝑡
= F⃗𝑔 + F⃗𝑏 + F⃗𝑑. (1.24.2)

The gravity force F⃗𝑔 acts downward. The

buoyancy F⃗𝑏 and drag F⃗𝑑 forces act upwards.

The buoyancy force is simply the weight of a

displaced fluid. Combining volume of the sphere

𝑉𝑠 =
1

6
𝜋𝑑3 with the gravitational acceleration 𝑔

and the density of fluid 𝜌𝑓 or density of sphere

𝜌𝑠 one can obtain expressions for calculating

buoyancy force

𝐹𝑏 = 𝜌𝑓𝑔𝑉𝑠 =
1

6
𝜋𝑑3𝜌𝑓𝑔

and gravity force

𝐹𝑔 = 𝜌𝑠𝑔𝑉𝑠 =
1

6
𝜋𝑑3𝜌𝑠𝑔

respectively.

Substituting force expressions and taking projection of the

Eq. (1.24.2) onto the vertical axis directed downward, we obtain

the following differential equation:

1

6
𝜋𝑑3𝜌𝑠

𝑑𝑣

𝑑𝑡
=

1

6
𝜋𝑑3(𝜌𝑠 − 𝜌𝑓)𝑔 − 3𝜋𝜂𝑣𝑑.

It can be simplified through dividing the left and right sides

onto the mass of the sphere 𝑚 = 1
6𝜋𝑑

3𝜌𝑠:

𝑑𝑣

𝑑𝑡
=

𝜌𝑠 − 𝜌𝑓
𝜌𝑠

𝑔 − 18𝜂

𝑑2𝜌𝑠
𝑣. (1.24.3)
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If the sphere starts its motion with no initial velocity, the dif-

ferential equation (1.24.3) has the following solution:

𝑣(𝑡) = 𝑣∞

(︂
1− exp

(︂
− 𝑡

𝜏

)︂)︂
, (1.24.4)

where 𝑣∞ is the settling velocity and 𝜏 is a relaxation time.

The resistance force will increase with velocity. As the sphere

moves through fluid, after an initial unsteady transition, it will

reach a constant velocity known as the terminal velocity 𝑣∞. At

this stage, the left side of Eq. (1.24.2) and (1.24.3) is equal to zero.

The sphere would not have an acceleration. Thus, we obtain the

expression for terminal velocity

𝑣∞ =
𝑔𝑑2

18𝜂
(𝜌𝑠 − 𝜌𝑓) .

By reversing this equation, viscosity coefficient can be deter-

mined:

𝜂 =
𝑔𝑑2

18𝑣∞
(𝜌𝑠 − 𝜌𝑓) . (1.24.5)

The relaxation time 𝜏 is the time at which the sphere released

from rest reaches 63.2% of its terminal speed 𝑣∞. This can be

seen by noting that when 𝑡 = 𝜏 Eq. (1.24.4) yields 𝑣 = 0.632 𝑣∞.

Value of the relaxation time is the following

𝜏 =
𝑚

3𝜋𝜂𝑑
=

𝜌𝑠𝑑
2

18𝜂
=

𝜌𝑠
𝜌𝑠 − 𝜌𝑓

𝑣∞
𝑔
. (1.24.6)

When 𝑡 = 3𝜏 , velocity of the sphere would reach 95% of its

terminal velocity. From that moment, motion is almost settled.

To verify that assumption, time dependence of the sphere path

𝑆(𝑡) is necessary. This dependence can be found by integrating

Eq. (1.24.4) over time

𝑆(𝑡) = 𝑣∞(𝑡− 𝜏 ) + 𝑣∞𝜏 exp

(︂
− 𝑡

𝜏

)︂
.

24



The exponential term of the previous equation can be neglected

if 𝑡 ≥ 3𝜏 . Thus, for 𝑡 = 3𝜏 sphere passes the distance

𝑆(3𝜏 ) ≈ 2𝑣∞𝜏 . The sphere should make a pass of 2𝑣∞𝜏 through

the fluid before it starts to move uniformly.

Reynolds number is a dimensionless parameter that represents

the ratio of of inertial forces to viscous forces in fluid.

𝑅𝑒 =
𝜌𝑓𝑣∞𝑑

𝜂
. (1.24.7)

Reynolds number provides a good indication of the flow type.

Typically all flows can be classified into three categories based on

their Reynolds numbers: creeping flow where Reynolds number

is very small (𝑅𝑒 ≪ 1) and inertia effects are negligible; laminar

flow where flow has a low or intermediate Reynolds number and

a smooth varying; turbulent flow where Reynolds number is very

high (thousands or even higher) and flow has strong random high-

frequency fluctuations.

Step-by-step Procedure of the Experiment

1. Use the micrometer to measure the diameter 𝑑 of the sphere

in three different orientations and find an average value ⟨𝑑⟩.
2. Drop the sphere into the fluid. Use the stopwatch to measure

time 𝑡 it takes the sphere to travel from the label a to the

label b (see Fig. 1.24.i).

3. Measure the height of the liquid column ℎ between the labels

a and b.
4. Compute the terminal velocity 𝑣∞ = ℎ/𝑡.
5. Calculate the viscosity coefficient 𝜂 with Eq. (1.24.5).

6. Use equation (1.24.6) to find the relaxation time 𝜏 . Calculate

the path 2𝑣∞𝜏 that the sphere should pass before its speed is

settled. Compare it with a height of a liquid column in the

cylinder over the label a (see Fig. 1.24.i).
7. Repeat steps 1 through 6 with the second sphere.
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Table 1.24.i

# 𝜌𝑠, ⟨𝑑⟩, 𝑡𝑓 , 𝑣∞, 𝜂, 𝑅𝑒 ⟨𝜂⟩,
103 kg/m3 10−3 m s m/s Pa·s Pa·s

1

2

8. Calculate the average coefficient of the internal friction of ⟨𝜂⟩.
Record all data to Table 1.24.i.

9. Calculate the Reynolds number 𝑅𝑒 (eq. 1.24.7).
10. Find the uncertainties (absolute and relative) of the obtained

values. Assume that the measured value of the viscosity coef-

ficient 𝜂 depends on 𝑙, 𝑡, and 𝑑 only.
11. Analyze results and make conclusions.

After-lab Questions

Case 1.
1. Why the drop time should be measured only after the sphere

passes the label a but not at the beginning of the motion?
2. How the terminal velocity 𝑣∞ of the ball would change if its

linear size increases?
3. Derive an expression for calculating viscosity coefficient in this

experiment.
4. Problem. A small sphere of mass 2.00 g is released from rest

in a large vessel filled with oil. It experiences a resistive force

proportional to its speed. The sphere reaches a terminal speed

of 5.00 cm/s. Determine the time constant 𝜏 . Ignore the

buoyant force.
Answer: 𝜏 = 5 · 10−3 s.

Case 2.
1. What is the relaxation time?
2. Is it possible to conduct this type of experiment with spheres

made of wood?
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3. Derive an expression for terminal speed in this experiment.
4. Problem. A sky diver of mass 80.0 kg jumps from a slow-

moving aircraft and reaches the terminal speed of 50.0 m/s.

What is the acceleration of the sky diver when the speed is

30.0 m/s?
Answer: 𝑎 = 4 m/s2.

Case 3.
1. Formulate the Stokes’s law.
2. Why the motion of the sphere becomes uniform after certain

time?
3. Derive an expression for velocity of the sphere as a function

of time.
4. Problem. Calculate the force required to pull a iron ball ( of

density 7.8 g/cm3) of radius 2.0 cm upward through a fluid

at the constant speed 1.0 m/s. Take the drag force propor-

tional to the speed with the proportionality constant equal to

1.0 kg/s. Ignore the buoyant force.
Answer: 𝐹 = 3.6 N.

LABORATORY EXPERIMENT 1.30

HEAT CAPACITIES RATIO MEASUREMENTS

Purpose of the Experiment: to get acquainted with iso-pro-

cesses in the thermodynamic system and to measure ratio 𝐶
P
/𝐶

V

for an air.

Equipment and Accessories: carboy, U-tube pressure gage

(manometer), rubber pressure bulb (pump), two valves.

Basic Methodology. Dry air under a small pressure is en-

closed in a large vessel having a gas tight valve. The valve is

opened for an instant permitting the pressure to become atmo-

spheric and causing the temperature reduction. After the valve is
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closed, the gas warms up to the room temperature and the pres-

sure increases. From knowing of the initial and final pressures, the

ratio of the specific heats is obtained.

Recommended Pre-lab Reading: [1] 19.8; [2] 18.8; [3] 21.2–

21.4.

Pre-lab Questions

1. What is the specific heat ratio?
2. What is the adiabatic process?
3. What is the SI unit for specific heat?

Theoretical Introduction

The heat capacity ratio of the gas 𝛾 = 𝐶
P
/𝐶

V
can be deter-

mined using the method proposed by Clement and Dezormes. A

two step process can be applied to determine this ratio 𝛾 = 𝐶
P
/𝐶

V

experimentally:

∙ An adiabatic reversible expansion from the initial pressure

𝑃1, to the intermediate pressure, 𝑃0 — atmospheric pressure

(dotted curve in Fig. 1.30.i):

State 𝐼 : 𝑃1, 𝑉1, 𝑇1 ⇒ State 𝐼𝐼 : 𝑃0, 𝑉2, 𝑇2,

here 𝑉1 and 𝑉2 are specific volumes of a gas (volume per unit

mass) in states 𝐼 and 𝐼𝐼 accordingly.
∙ Restoration of the temperature to its initial value 𝑇1, at con-

stant volume (solid curve in Fig. 1.30.i):

State 𝐼𝐼 : 𝑃0, 𝑉2, 𝑇2 ⇒ State 𝐼𝐼𝐼 : 𝑃2, 𝑉2, 𝑇1.

For adiabatic expansion in states 𝐼 and 𝐼𝐼, volume and pressure

of an ideal gas are related via Poisson’s equation

𝑃1𝑉
𝛾
1 = 𝑃0𝑉

𝛾
2 .
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Thus, 𝛾 can be found by solving the previous equation

𝛾 =
ln(𝑃1/𝑃0)

ln(𝑉2/𝑉1)
. (1.30.1)

The ratio of volumes 𝑉2/𝑉1 can be expressed via the ratio of

pressures 𝑃1/𝑃2 since states 𝐼 and 𝐼𝐼𝐼 belong to the same isother-

mal process (dashed curve in Fig. 1.30.i). Thus, volume and pres-

sure at these states have to obey Boyle’s law:

𝑉2

𝑉1
=

𝑃1

𝑃2
.

Substituting this relation into Eq. (1.30.1), the alternative ex-

pression for 𝛾 is obtained

𝛾 =
ln(𝑃1/𝑃0)

ln(𝑃1/𝑃2)
. (1.30.2)

Eq. (1.30.2) is the principal equation of the Clement and Des-

ormes method. If the pressure differences Δ𝑃1 (Δ𝑃1 = 𝑃1 − 𝑃0)
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and Δ𝑃2 (Δ𝑃2 = 𝑃2−𝑃0) are small in comparison with the atmo-

spheric pressure 𝑃0, then the expression (1.30.2) can be simplified:

𝛾 =
ln
(︁
1 + Δ𝑃1

𝑃0

)︁
ln
(︁
1 + Δ𝑃1

𝑃0

)︁
− ln

(︁
1 + Δ𝑃2

𝑃0

)︁ ≈
Δ𝑃1
𝑃0

Δ𝑃1
𝑃0

− Δ𝑃2
𝑃0

=
Δ𝑃1

Δ𝑃1 −Δ𝑃2
.

(1.30.3)

Taking into account that extra pressure Δ𝑃 is proportional to

the difference in height ℎ of the liquid surface in the U-type gage,

Eq. (1.30.3) yields to the simplified expression

𝛾 =
ℎ1

ℎ1 − ℎ2
, (1.30.4)

where ℎ1 ∼ Δ𝑃1 and ℎ2 ∼ Δ𝑃2 are heights of the liquid in states

𝐼 and 𝐼𝐼 accordingly.

The expression (1.30.4) is the main equation used in this exper-

iment to determine the ratio of the specific heats 𝛾 with Clement

and Desormes method.

Specific heat ratio 𝛾 can also be calculated by means of statisti-

cal mechanics. The number 𝑖 of degrees of freedom of the molecule

is the number of independent coordinates which must be specified

in order to locate the molecule and its component atoms in space.

In statistical mechanics, each degree of freedom contributes, on

average, 1
2𝑅𝑇 of energy per mole of an ideal gas. Thus, for an ideal

gas of molecules with 𝑖 degree of freedom molar heat capacitance

under constant volume 𝐶
V
= 𝑖

2𝑅. Molar heat capacitance under

constant pressure 𝐶
P
(for an ideal gas) can be calculated according

to Mayer’s relation: 𝐶
P
= 𝐶

V
+ 𝑅. Finally, we obtain theoretical

expression for the specific heat ratio:

𝛾
𝑡ℎ
=

𝐶
P

𝐶
V

=

𝑖 + 2

2
𝑅

𝑖

2
𝑅

=
𝑖 + 2

𝑖
= 1 +

2

𝑖
. (1.30.5)
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Each molecule has at least three translational degrees of free-

dom. At room temperatures, vibrational degree of freedom can be

neglected. A polyatomic molecule also possesses rotational degree

of freedom: two for a linear molecules and three for a non-linear

one.

Thus, the total number of degrees of freedom 𝑖 is the sum of

three related to the translational motion and those (zero, two or

three) related to the rotational motion.

Description of the Equipment

Clement and Desormes method is implemented on an apparatus

consisting of a carboy with air, U-tube pressure gage M intended

for measuring the pressure difference inside and outside the bal-

loon, and rubber pump intended for creating an extra pressure

inside the carboy (Fig. 1.30.ii).

To create an initial pressure 𝑃1, the air is pumped up and into

the carboy (opened valve Vl2 and closed Vl1) until the fluid sur-

faces of the gage are of 30 – 40 mm different. The air in the carboy

is heated under the pressure increase. In 2–3 minutes, the temper-
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Table 1.30.i

# ℎ1, mm ℎ2, mm 𝛾 ⟨𝛾⟩ 𝛾
𝑡ℎ

1

2

3

4

5

ature in the balloon does back to its original value and becomes

equal to the room temperature due to heat transfer. After that,

the surfaces of the gage get a steady difference in height ℎ1.

Step-by-step Procedure of the Experiment

1. Close the valve Vl1. Open the valve Vl2. Pump extra air into

the carboy with a pressure bulb. Close the valve Vl2. Be sure

you have about 50–60 mm level difference on pressure gage.

2. Wait about 5 minutes until the surfaces of the gage have a

steady difference in height, and then record the height dif-

ference as ℎ1. NOTE: If the surfaces are at the same

height, there must be some puncture in your device.

3. Expand the gas adiabatically by opening the valve Vl1. The

air pressure in the carboy will be the same as that in the

surroundings. This must be done within 5 seconds. Then

close the valve Vl1 again.

4. Wait about 5 minutes until surfaces of the gage have a steady

difference in height, and then record the height difference as

ℎ2.

5. Repeat steps from 1 through 4 five times and record the data

to Table 1.30.i.

6. Calculate 𝛾 for each run by Eq. (1.30.4). Find the average

value ⟨𝛾⟩ and its standard deviation.
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7. Compute theoretical value 𝛾
𝑡ℎ
for air from number of degrees

of freedom according to Eq. (1.30.5). Assume that air consist

of molecular oxygen and nitrogen only.

8. Analyze results and make conclusions.

After-lab Questions

Case 1.

1. Formulate the 1st law of thermodynamics.

2. Derive the expression for 𝛾 you used in this experiment.

3. If during the experiment the atmospheric pressure changes,

would it be legitimate to use Eq. (1.30.4) to calculate 𝛾?

4. Problem. Find theoretical values of 𝛾, 𝐶
P
, and 𝐶

V
for methane

(CH4) at room temperatures.

Case 2.

1. Define the internal energy of a thermodynamic system.

2. Derive the Poisson equation for the ideal gas.

3. If the air in the carboy contains water vapor, would the value

of 𝛾 for this damp air be higher or less than the value of 𝛾 for

dry air?

4. Problem. Find theoretical values of 𝛾, 𝐶
P
, and 𝐶

V
for carbon

dioxide (CO2) at room temperatures.

Case 3.

1. Define the molar heat capacitance and specific heat.

2. Derive the relationship between 𝐶
P
and 𝐶

V
for the ideal gas.

3. Draw a rough graph of the relationship between pressure and

volume for isothermal and adiabatic compressions of gas. Which

of the two graphs is steeper?

4. Problem. Find theoretical values of 𝛾, 𝐶
P
, and 𝐶

V
for ammonia

(NH3) at room temperatures.
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LABORATORY EXPERIMENT 1.31

SPEED OF SOUND IN AIR

Purpose of the Experiment: to measure speed of sound in

air by exploring resonance effect in standing waves.

Equipment and Accessories: sound generator, loudspeaker,

glass tube with air/water column, water tank, flexible pipe, meter

stick.

Basic Methodology. The length of the air column in a vertical

tube is adjusted by adding and/or removing water from the tube.

Notes of various frequencies are sent into the air column. In a

pipe closed at one end, resonance can be clearly heard at a certain

water level. Distance between consecutive resonance points is a

one-half of a wavelength. The speed of sound can be calculated

based on the input frequency.

Recommended Pre-lab Reading: [1] 16.2, 16.4; [2] 14.6,

14.7; [3] 17.2, 18.5.

Pre-lab Questions

1. What is a relation between wavelength, frequency of oscilla-

tions, and propagation speed of waves?
2. What is a theoretical value of a specific heat ratio for air?
3. Specify acoustic frequency range.

Theoretical Introduction

The mathematical equation for an ideal gas undergoing a re-

versible adiabatic process (often called Poisson equation) is

𝑃𝑉 𝛾 = const, (1.31.1)

where 𝑃 is pressure, 𝑉 is specific or molar volume, and 𝛾 is the

adiabatic index. Exponent in a Poisson equation is determined as
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follows:

𝛾 =
𝐶

P

𝐶
V

, (1.31.2)

where 𝐶
P
being the molar heat capacity of a gas at constant pres-

sure, and 𝐶
V
being the molar heat capacity of a gas at constant

volume.

Adiabatic index can be experimentally determined by standing

sound waves.

In gases and liquids sound waves can be only longitudinal. They

consist of the alternating compression and depression of the

medium (in solid bodies, both longitudinal and transversal waves

can spread). Sound oscillations occur so fast that we consider

compressions or depressions as the adiabatic.

In small volumes (in comparison with the wavelength), the

changes of a gas state are described by Eq. (1.31.1).

After differentiating Eq. (1.31.1), we obtain

𝑉 𝛾𝑑𝑃 + 𝛾𝑃𝑉 𝛾−1𝑑𝑉 = 0.

Whence
𝑑𝑃

𝑑𝑉
= −𝛾

𝑃

𝑉
. (1.31.3)

If 𝑃 , 𝑉 , and 𝛾 are positive, then it follows from Eq. (1.31.3)

that 𝑑𝑃/𝑑𝑉 < 0 (when pressure increases (𝑑𝑃 > 0) the volume

occupied by the matter decreases (𝑑𝑉 < 0)).

The propagation speed of the longitudinal waves in an elastic

medium is determined by the equation

𝑣𝑠 =

√︃
𝑑𝑃

𝑑𝜌
, (1.31.4)

where 𝜌 is the mass density of the media. The derivative
𝑑𝑃

𝑑𝜌
should be taken under adiabatic condition.
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For the speed of sound waves in gas, we obtain

𝑣𝑠 =

√︃
𝛾𝑃

𝜌
. (1.31.5)

The gas density 𝜌 is determined by the equation of state

𝑃𝑉 = 𝑚
𝜇𝑅𝑇 . As we know, 𝜌 = 𝑚/𝑉 , and

𝜌 =
𝜇𝑃

𝑅𝑇
, (1.31.6)

where 𝜇 is a molar mass of the gas, 𝑇 is the absolute tempera-

ture of the gas, and 𝑅 = 8.314472 J/(mol·K) is the universal gas
constant. Substituting this expression into (1.31.5), we get

𝑣𝑠 =

√︃
𝛾𝑅𝑇

𝜇
. (1.31.7)

Thus for a given gas, the speed of sound wave propagation is

directly proportional to a square root of the absolute temperature,

and it does not depend on the pressure of gas.

Velocity of sound in different gases taken under the same condi-

tions is inversely proportional to a square root of their molecular

masses. So, the speed of sound in hydrogen (𝑣
H2

= 1263 m/s, at

273 K) exceeds the speed of sound in air (𝑣
𝑎𝑖𝑟

= 331 m/s, at 273 K)

almost four times.

The ratio between heat capacities 𝛾 is deduced from the expres-

sion of the speed of sound (1.31.7):

𝛾 = 𝑣2𝑠
𝜇

𝑅𝑇
. (1.31.8)

To obtain the numerical value of 𝛾, we measure an absolute

temperature of air. The air molar mass is 𝜇 = 29 · 10−3 kg/mole.

The speed of sound is determined by the method of standing

waves (the method of Kund). Two overlapping plane waves which
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have the same frequency and amplitude form standing waves. This

is the case of interference of the incident and rejected waves.

The installation intended for studying formation of standing

waves is shown in Fig. 1.31.i. It serves for measuring the speed

of sound in the air 𝑣𝑠. This method is based on the resonance

phenomenon. A glass cylinder is joined to the water tank by a

rubber pipe. There is a loudspeaker at the open edge of the cylin-

der. The diaphragm of the loudspeaker is oscillating with a certain

frequency provided by the sound generator.

In this experiment, longitudinal standing waves are created in

a tube containing air. By adjusting the amount of water in the

tube, one can lengthen or shorten the column of air in the tube. In

tubes, pipes, or columns open at one end and closed at the other,

a stable standing wave pattern requires a displacement antinode

exist at the open end and a displacement node at the closed end
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of the tube. This means that the fundamental (first harmonic)

standing wave in such a tube occurs when the column of air is

of length 𝜆/4. Here 𝜆 is a wavelength. The series of nodes and

antinodes form an odd harmonic series in a tube open at one end

and closed at the other. Thus, the condition for a standing wave

to be formed in a tube closed at one end is

ℎ𝑛 = (2𝑛 + 1)
𝜆

4
, (1.31.9)

where ℎ𝑛 the water level position that corresponds to the 𝑛-th

resonance. The distance between successive antinodes is Δℎ cal-

culated as follows:

Δℎ = ℎ𝑛+1 − ℎ𝑛 = [2(𝑛 + 1) + 1]
𝜆

4
− (2𝑛 + 1)

𝜆

4
=

𝜆

2
. (1.31.10)

To find the speed of sound we should know the frequency of

sound 𝑓 set by the generator and measure Δℎ:

𝑣𝑠 = 𝜆𝑓 = 2Δℎ𝑓. (1.31.11)

Step-by-step Procedure of the Experiment

1. Turn on the power of the sound generator. Set up the output

frequency 𝑓 recommended by your lab instructor. Set the

quiet sounding of the dynamic loudspeaker by the handhold.

Adjust the output volume to provide a sound at approximately

one half of its maximum value.

2. Change the height of the water column by lifting or lowering

the water tank. The sound intensity will change. Read posi-

tions of water level ℎ𝑖 that correspond to the maximum sound

intensity (resonance achieved).

3. Calculate the distance Δℎ𝑖 for several pairs of consecutive

resonance water levels: Δℎ𝑖 = ℎ𝑖+1 − ℎ𝑖. Find an average

value ⟨Δℎ⟩.
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Table 1.31.i

# 𝑓 , Hz 𝑇 , K Δℎ1, m Δℎ2, m ⟨Δℎ⟩, m 𝑣𝑠, m/s 𝛾

1

2

4. Check the air temperature in the laboratory. Do not forget to

convert it into Kelvins, 𝑇 , K.
5. Record the experimental data 𝑓 , Δℎ, 𝑇 to Table 1.31.i and

calculate the speed of sound 𝑣𝑠 with Eq. (1.31.11).
6. Calculate the adiabatic index 𝛾 = 𝐶

P
/𝐶

V
according to equa-

tion (1.31.8). Compare obtained values with the theoretical

𝛾𝑡ℎ given by Eq. (1.30.5). Refer to the comments to that equa-

tion in the description of the experiment 1.30.
7. Repeat steps from 1 through 6 with another frequency of

sound.
8. Find uncertainties of your measurements.
9. Analyze results and make conclusions.

After-lab Questions
Case 1.
1. What process is called the adiabatic one? Derive the Poisson’s

equation.
2. Write an expression for the root mean square velocity of gas

molecules. Compare it with the expression for calculating the

speed of a sound (1.31.7).
3. What is the standing wave?
4. Problem. The wave equation for a particular wave is

𝑦(𝑥, 𝑡) = 4 sin(𝜋(𝑥−400𝑡)/2). All values are in appropriate SI

units. What is the amplitude 𝐴, wavelength 𝜆, frequency 𝑓 ,

and propagation speed 𝑣𝑠 of the wave?

Case 2.
1. Give the definition of heat capacities 𝐶

P
and 𝐶

V
. Derive the

dependence between them.
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2. Derive the expression for the speed of a sound in a gas.
3. Explain the reason for changing a sound intensity in the cylin-

der filled with air that is observed during the experiment.
4. Problem. The wave equation for a particular wave is

𝑦(𝑥, 𝑡) = 6 cos(𝜋(2𝑥 − 300𝑡)). All values are in appropriate

SI units. What is the amplitude 𝐴, wavenumber 𝑘, period 𝑇 ,

and propagation speed 𝑣𝑠 of the wave?

Case 3.
1. Calculate the adiabatic index for helium, molecular hydrogen,

and acetylene (C2H2) at room temperatures.
2. How is the wavelength related to the frequency and the prop-

agation speed of sound in the medium?
3. How does the speed of a sound wave depend on the pressure

and temperature of the gas?
4. Problem. The wave equation for a particular wave is

𝑦(𝑥, 𝑡) = 4 cos(𝜋(200𝑡− 7𝑥)/2). All values are in appropriate

SI units. What is the amplitude 𝐴, wavelength 𝜆, period 𝑇 ,

and propagation speed 𝑣 of the wave?
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Chapter 2

ELECTRICITY AND MAGNETISM

LABORATORY EXPERIMENT 2.1

INVESTIGATION OF THE ELECTROSTATIC FIELD BY THE

MODELING METHOD

Purpose of the Experiment: to study an electrostatic field

generated by differently shaped electrodes, construction of equipo-

tentials, and lines of an electric field.

Equipment and Accessories: electrolytic bath with differ-

ently shaped electrodes and grid; oscilloscope, voltmeter, micro-

ammeter, probes, source of AC voltage.

Basic Methodology. The method is based on the similarity

demonstrated by electric fields in vacuum and homogeneous elec-

trolyte if they are created by the same system of charges. There are

charge carriers in the electrolyte. At every point of the electrolyte

current density is proportional to the electric field E⃗. Measuring

the magnitude of the current through a small flat probe, placed

at different points of the electrolyte, one can draw electric field

vectors.

Recommended Pre-lab Reading: [1] 21.4, 21.6, 23.2, 23.4,

23.5; [2] 22.1, 22.2, 24.2, 24.3, 24.4; [3] 23.4, 23.6, 25.1.

Pre-lab Questions

1. Formulate Coulomb’s law.
2. Define an electric field E⃗.
3. Define a potential.
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Theoretical Introduction

An electrostatic field is characterized at every point by the elec-

tric field vector E⃗ and potential 𝜙 which are related to each other

as

E⃗ = −grad𝜙. (2.1.1)

This field can be graphically represented by electric field lines

and equipotential lines. As the electric field lines and the equipo-

tential lines are perpendicular, the electrostatic field can be rep-

resented using only field or equipotential lines.

To investigate field and equipotential lines arrangement, in this

experiment the method of field modeling with a help of an elec-

trolytic bath is used. The method is based on the similarity

demonstrated by fields in vacuum and homogeneous electrolyte

when created by the same system of charges. There are charge

carriers in electrolyte unlike vacuum or insulator, so to maintain

constant potentials on the electrodes a current source should be

used. Investigated electric field causes the motion of free charges,

i.e. there is an electrical current with density j⃗. According to

Ohm’s law,

j⃗(𝑥, 𝑦, 𝑧) = 𝜎E⃗(𝑥, 𝑦, 𝑧), (2.1.2)

where 𝜎 is the conductivity of the electrolyte.

At each point of the electrolyte, the current density is pro-

portional to the electric field strength E⃗, so in the bath (under

the condition of homogeneity of the electrolyte), there is formed

the field of current density (spatial distribution of current density

j⃗ = j⃗(𝑥, 𝑦, 𝑧)), which is similar to the electric field. To investigate

the field of current density is much easier than the electric field in

vacuum. Current lines can be determined by measuring current

strength that passes through some flat area (a small flat probe)

which is placed at different points of the electrolyte.
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Distribution of potentials can be found with a cylindrical metal

electrode (probe). The probe potential is equal to the potential of

the point of the field in which the probe is placed. Pay attention

that the electric circuit of the probe should have resistance greater

than the resistance between the points in the electrolyte, and the

probe should have a small size in comparison with the electrodes,

otherwise, the presence of the probe can distort the field. To

prevent polarization of the electrolyte an AC voltage source of

frequency 50 Hz is used. Under such frequency the distribution of

currents in the electrolytic bath can be regarded as constant at a

moment of time (quasi-stationary).

Osc 

El  El 
P1 

P2 

PwS V    

Rp 

µµµµA 

Figure 2.1.i

The experimental setup is shown in Fig. 2.1.i. Metal electrodes

El are placed in the dielectric bath filled with electrolyte (water).
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Power supply PwS creates a potential difference at the electrodes,

the field between which we want to study.

Position of equipotential lines is determined with help of a cylin-

drical probe P1. The probe P1 and the movable contact of the

potentiometer R are connected to the oscilloscope (the horizontal

scanning of the oscilloscope is off). The length of a vertical line

on the oscilloscope screen is proportional to the potential differ-

ence between the movable contact of the potentiometer R and the

probe P1. If this potential difference is equal to zero, then there is

a flashing dot on the screen. Changing position of the probe P1,

you can find a point in the bath in which the potential is equal to

the potential of the rolling contact of the potentiometer R. These

points lie on the equipotential line of the investigated field. A

potential of the field on this line is determined by a voltmeter V.

Changing the position of the rolling contact of the potentiometer

R, we can determine the position of equipotential lines which have

different potentials.

Field lines arrangement, coinciding with the current density

lines, is determined with help of the flat probe P2 and the mi-

croammeter. The probe P2 consists of two metal plates separated

by a dielectric layer and connected through a microammeter (see

Fig. 2.1.i). To have the current between the plates passing through

the microammeter and not through the electrolyte, microammeter

resistance must be considerably smaller than that of the electrolyte

between the points where the plates are. If the plates are paral-

lel to current density lines (current lines do not pass through the

plates), then current does not flow through the microammeter. In

this case, electric field lines are also parallel to the plane of the

plates. Rotating the probe about the vertical axis, we can obtain

the current flowing through the ammeter to be maximal. In this

case, the plane of the plates is perpendicular to current density
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lines and accordingly electric field lines.

Step-by-step Procedure of the Experiment

Task 1. Construction of equipotential lines.

1. On a graph paper (keeping the scale) draw a system of elec-

trodes (the shape of the electrodes is given by an instructor).

2. Fill the bath with water. Water is nearly 10 mm high. Switch

on the power supply.

3. Switch on the oscilloscope and warm it up for 2–3 minutes.

Turn off the horizontal scanning and, using tuning knobs, lo-

cate the electron beam in the center of the screen.

4. Determine the potentials of the electrodes which are specified

by power supply. For this, set the handle of the potentiometer

R to the leftmost position and touch one of the electrodes with

the probe P1. There will be a line or a dot on the oscilloscope

screen. If there is a dot, the probe potential is zero. If there

is a line, the electrode potential is nonzero. To determine the

potential of this electrode, rotate the knob of the potentiome-

ter without removing the probe from the electrode until the

line on the screen becomes a dot. The voltmeter shows the

potential of this electrode.

5. Set the voltage 2 V on the voltmeter. Moving the probe P1

along the bottom of the bath, find the position when the ver-

tical line on the oscilloscope screen becomes a dot. This po-

sition of the probe mark on the graph paper with diagram of

the electrodes. Moving the probe in the space between the

electrodes with the step of 10 mm, find 5–6 such points and

connect them. Received line is an equipotential line of a given

potential.

6. Increasing voltage, draw 3–5 equipotential lines as it is de-

scribed in step 5.
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7. Draw field lines of the investigated field considering that they

are perpendicular to equipotential lines.
8. Make conclusions.

Task 2. Construction of electric field lines.

1. Place flat probe P2 in the electrolyte and rotate it about its

axis until the current passing through the micro-ammeter be-

comes zero. In this case, the plane of the electrode is a tangent

to the electric field line at a given point of the electrolyte.
2. Find the direction of field lines moving the probe from one

electrode to another and along the electrodes with the step of

10 mm.
3. Draw a map of electric field lines. Compare these lines with

the lines constructed in Task 1, step 7.
4. Make a conclusion.

Task 3. Check of Gauss law for the electric field.
1. Choose a closed surface in the electrolyte between the elec-

trodes through which the flux of E⃗ will be determined (a rec-

ommended surface is the one which projection on the bath

bottom is a square-shaped contour with sides of two widths

of the probe P2).
2. Set the probe P2 so that the same side faces inwards the sur-

face, and measure the magnitude of the current.
3. Move the probe so that its successive positions draw a closed

surface, and measure the magnitude of the current for each

probe position.
4. Determine electric flux Φ through a closed surface, using the

expression Φ = 𝜌𝐼 where 𝐼 is an algebraic sum of the currents,

𝜌 = 103 Om·m.
5. Make conclusions.
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After-lab Questions

Case 1.

1. What is an electric field vector and a potential of the electro-

static field? What is the relationship between them?

2. Formulate the superposition principle of electrostatic fields.

3. What charge distribution should be for reasonable application

of the Gauss’s law in the integral form to find an electrostatic

field?

4. Problem. The electric field is given

E⃗ = −(𝑎i + 𝑏j + 𝑐k⃗), where 𝑎, 𝑏, 𝑐 are constants. Find the

potential 𝜙(𝑥, 𝑦, 𝑧) in consideration of 𝜙(0, 0, 0) = 0.
Answer: 𝜙 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧.

Case 2.

1. What is an electric flux? Formulate the Gauss’s law.

2. Explain why the field lines and equipotential surfaces are mu-

tually perpendicular.

3. Explain the method of modeling in the electrolytic bath.

4. Problem. Two like point charges 𝑞1 = 100 nC and 𝑞2 = 200 nC

are at the distance of 1 m from each other. Find the 𝑥 coordi-

nate of the point at which the electric field produced by these

charges is zero. Place the charge 𝑞1 at the origin.

Answer: 𝑥 = 0.41 m.

Case 3.

1. What is the circulation of electric field equal to? Formulate

the condition of field potentiality.

2. Draw the field lines and equipotential surfaces of the field

produced by: a) a point charge, b) a uniformly charged plane.

3. By using the Gauss’s law, calculate the electric field of a sphere

with radius 𝑅 if the charge is distributed over the surface with

density 𝜎.
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4. Problem. The electric field is given in the form 𝜙 = 𝑎𝑥3+𝑏𝑦2+𝑐𝑧,

where 𝑎, 𝑏, 𝑐 are constant values. Find the dependence of elec-

tric field vector on the coordinates E⃗(𝑥, 𝑦, 𝑧).
Answer: E⃗(𝑥, 𝑦, 𝑧) = −(3𝑎𝑥2⃗i + 2𝑏𝑦j + 𝑐k⃗).

LABORATORY EXPERIMENT 2.3

DETERMINATION OF THE CAPACITANCE OF A

CAPACITOR USING A BALLISTIC GALVANOMETER

Purpose of the Experiment: to determine the capacitance

of a capacitor and the battery of capacitors using a ballistic gal-

vanometer.

Equipment and Accessories: power supply of direct current;

potentiometer; voltmeter; commutator; reflecting ballistic galvanome-

ter; kit of the capacitors; leads.

Basic Methodology. A capacitor is charged by a power supply

and discharged through a ballistic galvanometer. The deflection

of the galvanometer light spot is in proportion to the amount of

charge that passes through the galvanometer. At the same po-

tential difference across the plates of capacitors, the amount of

charge stored on a capacitor is directly proportional to its capac-

itance. Thus, the capacitances can be determined by discharging

capacitors through the ballistic galvanometer.

Recommended Pre-lab Reading: [1] 24.1–24.3; [2] 25.1, 25.2,

25.4; [3] 26.1– 26.4.

Pre-lab Questions

1. What is the capacitance of a capacitor?
2. What is the SI unit for capacitance?
3. Does the value of the capacitance depend on the charge of

capacitor, potential difference across its plates? What does it
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depend on?

Theoretical Introduction

The ratio of the charge on capacitor plates 𝑞 to the potential

difference between the plates 𝑈 is called the capacitance 𝐶 of the

capacitor:

𝐶 =
𝑞

𝑈
. (2.3.1)

The value of the capacitance depends only on the shapes and

sizes of the conductors (plates) and on the nature of the insulating

material between them.

In this experiment, we determine an unknown capacitance of

capacitor using the capacitor with known capacitance. If known

capacitance is 𝐶0, and both capacitors have the same potential

difference 𝑈0 = 𝑈1, then the capacitance of the second capacitor

is

𝐶1 = 𝐶0
𝑞1
𝑞0
. (2.3.2)

Thus, to determine the unknown capacity 𝐶1, we have to measure

the amount of its charge 𝑞1 and the charge 𝑞0 of the capacitor with

known capacitance.

For capacitor charge estimation, we use a ballistic galvanome-

ter. The ballistic galvanometer differs from other moving-coil gal-

vanometers in the way that the moment of inertia of its moving

coil is increased by loading the coil. It causes that the period of

oscillation of the moving coil is large compared to the time for the

charge passing through it. Thus, when the charge passes through

it, the coil receives a kick due to an impulse torque. Subsequently,

the coil oscillates freely due to the restoring torque provided by

the suspension. The maximum deflection amplitude 𝜙 (called first

throw position) is reached long after the charge has passed. The

first throw position 𝜙 is proportional to the total charge passing
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through the coil:

𝑞 = 𝐷𝜙,

where 𝐷 is a proportionality coefficient.

The first throw position 𝜙 determines the deflection 𝑛 (in scale

divisions) of the galvanometer light spot. Clearly, 𝑛 is also directly

proportional to the charge 𝑞 discharged through the ballistic gal-

vanometer:

𝑞 = 𝐵𝑛, (2.3.3)

where 𝐵 is the coefficient of proportionality called the galvanome-

ter constant.
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Figure 2.3.i

The circuit for the experiment is shown in Fig. 2.3.i. DC source

ℰ is connected to the potentiometer 𝑅. Potential difference 𝑈

across the capacitor 𝐶 is regulated by the potentiometer and mea-

sured by the voltmeter V. With the switch Sw, one breaks the

circuit for capacitor charging and connects the capacitor into the

circuit with the galvanometer G through which the capacitor is

being discharged. By using the capacitor with known capacitance

𝐶0, we can determine the galvanometer constant 𝐵. It is easily

derived from Eqs. (2.3.3) and (2.3.1):

𝐵 =
𝑞0
𝑛0

=
𝐶0𝑈

𝑛0
, (2.3.4)
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Table 2.3.i

𝑈 = ... V
Measurement # 1 2 3 4 5

𝑛0, g.p.
⟨𝑛0⟩, g.p.

where 𝑛0 stands for galvanometer readings (in scale divisions)

when the capacitor 𝐶0 is being discharged.

Replacing the capacitor 𝐶0 with the capacitor (or battery of

capacitors) with unknown capacitance 𝐶𝑥, the latter can be deter-

mined by the formula obtained from the Eqs. (2.3.2), (2.3.3) and

(2.3.4):

𝐶𝑥 =
𝐵𝑛𝑥

𝑈
=

𝐶0𝑈

𝑛0

𝑛𝑥

𝑈
= 𝐶0

𝑛𝑥

𝑛0
, (2.3.5)

where 𝑛𝑥 stands for galvanometer readings under discharging of

the capacitor (or battery of capacitors) 𝐶𝑥.

Step-by-step Procedure of the Experiment

1. Turn the handle of the potentiometer 𝑅 to the leftmost po-

sition. Connect the capacitor with known capacitance 𝐶0 to

points 3, 4 of the electrical circuit with leads. Set the switch

Sw at the position 1.

2. Switch on the power supply. Using the potentiometer set

potential difference across the capacitor for its charging (the

value 𝑈 is recorded on the facility).

3. Measure the first throw position of the galvanometer light

spot 𝑛0 by turning the switch Sw from the position 1 (charg-

ing) to the position 2 (discharging). Repeat five times at the

same potential difference 𝑈 . (Charge the capacitor during

30 sec.) Calculate an average value of galvanometer readings

⟨𝑛0⟩. Record all data to Table 2.3.i.
4. Connect the capacitor with unknown capacity 𝐶𝑥 to the points

3, 4 of the circuit and repeat steps 2 and 3. Calculate an
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Table 2.3.ii

𝑈 = ... V
Measurement # 1 2 3 4 5

𝑛𝑥, g.p.
⟨𝑛𝑥⟩, g.p.

average value of galvanometer readings ⟨𝑛𝑥⟩. Record all data
to Table 2.3.ii.

5. Calculate the capacitor capacitance 𝐶𝑥 using Eq. (2.3.5).
6. Connect in parallel the capacitors 𝐶0 and 𝐶𝑥, repeat steps

4, 5, and determine the capacitance of the capacitor battery

𝐶𝑒𝑥𝑝
𝑝𝑎𝑟 .

7. Calculate the theoretical value of the capacitance of the ca-

pacitor battery using the formula

𝐶𝑝𝑎𝑟 =

𝑁∑︁
𝑖=1

𝐶𝑖 = 𝐶0 + 𝐶𝑥,

and compare it with 𝐶𝑒𝑥𝑝
𝑝𝑎𝑟 .

8. Connect in series the capacitors 𝐶0 and 𝐶𝑥, repeat steps 4, 5,

and determine the capacitance of this capacitor battery 𝐶𝑒𝑥𝑝
𝑠𝑒𝑟 .

9. Calculate the theoretical value of the capacitance of the ca-

pacitor battery using the formula

𝐶𝑠𝑒𝑟 =

(︃
𝑁∑︁
𝑖=1

1

𝐶𝑖

)︃−1

=
𝐶0𝐶𝑥

𝐶0 + 𝐶𝑥
,

and compare it with 𝐶𝑒𝑥𝑝
𝑠𝑒𝑟 .

10. Analyze obtained results and make conclusions.

After-lab Questions

Case 1.
1. What is the capacitance of an isolated conductor, a capacitor?
2. Derive an expression for calculating the capacitance of capac-

itors connected in series.
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3. What amount of energy is stored in a charged capacitor?

4. Problem. Calculate the capacity of a spherical capacitor which

consists of two concentric spheres with radii 𝑅1 = 10 cm and

𝑅2 = 10.5 cm. The space between the spheres is filled up with

oil of permittivity 𝜀 = 2. What radius should a single metal

ball with the same capacitance have if it is placed in oil?

Answer: 𝐶 = 470 pF, 𝑅 = 2.1 m.

Case 2.

1. We say that a capacitor has a charge Q. But is that what we

really mean? Is the total charge on a capacitor actually Q?

2. Derive an expression for calculating the capacitance of capac-

itors connected in parallel.

3. What happens if you short out (connect with a conductor)

the two plates of a large charged capacitor? Could this be

dangerous?

4. Problem. The spheres with radii 𝑅1 = 30 cm and 𝑅2 = 6 cm

have the same charges: 𝑞1 = 𝑞2 = 2 · 10−8 C. What are the

potentials of the spheres? What potential will the spheres

have if connected with a lead with negligible capacitance?
Answer: 𝜙1 = 600 V, 𝜙2 = 3000 V, 𝜙 = 1000 V.

Case 3.

1. How does a dielectric placed in a capacitor change its capaci-

tance? Why?

2. What is the expression for calculating the energy density for

an electric field?

3. Derive an expression for calculating the capacitance of a parallel-

plate capacitor.

4. Problem. A capacitor of capacitance 𝐶1 = 1 ·10−9 F is charged

to the potential difference of 𝑈 = 100 V and connected in par-

allel with a discharged capacitor of capacitance 𝐶2 = 2·10−9 F.
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How much energy Δ𝑊 is lost in spark generation because of

the connection?

Answer: Δ𝑊 = 3.3 𝜇J.

LABORATORY EXPERIMENT 2.4

INVESTIGATION OF THE PROCESSES OF CAPACITOR’S

CHARGING AND DISCHARGING

Purpose of the Experiment: to investigate in experimental

the processes of capacitor charging and discharging and determine

the time constant.

Equipment and Accessories: electronic oscilloscope with rect-

angular pulse generator; sets of capacitors and resistances.

Basic Methodology. A capacitor is charged and discharged

through a resistor. At a special mode of operation of the oscil-

loscope, at its screen we can see the dependence of the potential

difference across the capacitor on time.

Recommended Pre-lab Reading: [1] 26.4; [2] 27.5; [3] 28.4.

Pre-lab Questions

1. What is the relationship between the potential difference across

the capacitor plates and the charge stored on its plates?

2. What is the relationship between the current going through

the resistor and the voltage across it?

3. Use these relationships to write Kirchhoff loop equation in

terms of the EMF of the source, the capacitance of the capac-

itor, the resistance of the resistor, the current going through

the circuit, and the charge stored on the capacitor.
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Theoretical Introduction

The basic circuit for examining processes of the capacitor charg-

ing and discharging is shown in Fig. 2.4.i. It consists of a DC

source with the electro-motive force ℰ , a capacitor 𝐶, and a resis-
tance 𝑅 in series. By using a switch Sw, the capacitor can be con-

nected to the source (position 1, the capacitor is being charged)

or disconnected from it (position 2, the capacitor is being dis-

charged).

Let us consider the process of the capacitor’s charging. When

the circuit with the source and the capacitor is closed (Sw is in

position 1), the capacitor is being charged and there is a time-

varying current in the circuit. According to Kirchoff’s second rule

(Kirchoff’s loop rule), the sum of the potential difference across

the capacitor 𝐶 and the voltage across the resistor 𝑅 is equal to

the EMF of the source ℰ :

ℰ = 𝑉𝐶 + 𝑉𝑅 =
𝑞

𝐶
+ 𝐼𝑅, (2.4.1)

where 𝑞 is the capacitor’s charge; 𝐼 is the current at the instant.

While the capacitor is being charged, its charge 𝑞 is increasing and

the current is decreasing. We can evaluate the charge dependence

on time using the formula (2.4.1). As 𝐼 =
𝑑𝑞

𝑑𝑡
, so

ℰ =
𝑞

𝐶
+𝑅

𝑑𝑞

𝑑𝑡
. (2.4.2)
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Taking into account the initial condition 𝑞(𝑡)
⃒⃒
𝑡=0

= 0, the solu-

tion of this differential equation is the function

𝑞(𝑡) = 𝑞0

(︁
1− exp−𝑡/𝑅𝐶

)︁
, (2.4.3)

where 𝑞0 = ℰ𝐶 is the maximum charge of the capacitor.

Eq. (2.4.3) is the time dependence of the capacitor charge on

the charging process. The graph of this dependence is shown in

Fig. 2.4.ii (curve 1).

For capacitor discharging, the switch is in the position 2 (see

Fig. 2.4.i). In this case, there is no source in the closed circuit and

Eq. (2.4.1) looks like
𝑞

𝐶
+ 𝐼𝑅 = 0,

or (as 𝐼 =
𝑑𝑞

𝑑𝑡
)

𝑑𝑞

𝑑𝑡
+

𝑞

𝑅𝐶
= 0.

Taking into account the initial condition 𝑞(𝑡)
⃒⃒
𝑡=0

= 𝑞0, the solution

of this equation is the function

𝑞(𝑡) = 𝑞0 exp
−𝑡/𝑅𝐶 . (2.4.4)
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Eq. (2.4.4) is the time dependence of capacitor charge on the

discharging process. The graph of this dependence is shown in

Fig. 2.4.ii (curve 2).

The rate of the capacitor charging (discharging) is determined

by the time constant (or the relaxation time) of 𝑅𝐶–circuit:

𝜏 = 𝑅𝐶. 𝜏 is the time interval after disconnection with EMF dur-

ing which the capacitor charge has decreased to 1
𝑒 (about 0.368)

of its initial value.

The scheme of laboratory setup is shown in Fig. 2.4.iii. Con-

nection and disconnection to the source is imitated by the rect-

angular pulsing from generator to the 𝑅𝐶–circuit. Rectangular

pulse generator is included into the oscilloscope. During the time

𝑡𝑖𝑛𝑐, rectangular pulse generator supplies the voltage 𝑈0 constant

in magnitude(Fig. 2.4.iv, curve 1). This corresponds to the cir-

cuit for capacitor charging and, therefore, increase of the voltage

across the capacitor. Then, during the time 𝑡𝑑𝑒𝑐, the generator sup-

plies a zero voltage. This corresponds to the circuit for capacitor

discharging and, therefore, decrease of the voltage across the ca-

pacitor. Processes of charging and discharging repeat themselves
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with the period 𝑇 = 𝑡𝑖𝑛𝑐+𝑡𝑑𝑒𝑐 (see Fig. 2.4.iv). In this experiment,

the generator is adjusted so that the time of capacitor charging

is equal to the time of capacitor discharging: 𝑡𝑖𝑛𝑐 = 𝑡𝑑𝑒𝑐 =
𝑇

2
.

Connecting a resistor 𝑅𝑖 and a capacitor 𝐶𝑗 in series to the gen-

erator, one can examine the processes of capacitor charging and

discharging at different values of 𝜏 = 𝑅𝑖𝐶𝑗.

The voltage across the capacitor is applied to the oscilloscope

input and, for the given 𝑅𝐶–circuit, the time dependence of volt-

age 𝑈𝐶(𝑡) is shown at the oscilloscope screen. As the voltage across

the capacitor plates is proportional to its charge 𝑈𝐶(𝑡) =
𝑞(𝑡)

𝐶
, the

dependence 𝑈𝐶(𝑡) is similar to the dependence of the capacitor

charge on time 𝑞(𝑡) (see Fig. 2.4.iv, curve 2).

For quantitative investigation of this dependence we can use the

oscilloscope mode of operation when a continuous curve is shown

as a dashed line (the mode “Marks”, in Russian “Метки”) (see

Fig. 2.4.iv).

The time interval between the marks Δ𝑡𝑚 is determined by the

position of the switch “Метки” (Δ𝑡𝑚 = 20 or 100 𝜇𝑠), and it is a

distance between the beginnings of the adjacent marks (segments

of line) along the horizontal axis of time. By using marks, we

can determine the time of voltage increase (decrease) across the
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capacitor under its charging (discharging). For example, if within

the period 0 − 𝑡𝑖𝑛𝑐 there are six full marks, and the time interval

between the marks Δ𝑡𝑚 = 20 𝜇𝑠, then the time of voltage increase

under the capacitor charging is 𝑡𝑖𝑛𝑐 = 20·6 = 120 𝜇s. In Fig. 2.4.iv

ordinates of the curve points 𝑈𝑘 which correspond to the instants

of time 𝑡𝑘 = 𝑘Δ𝑡𝑚 (𝑘 = 1, 2,. . . ), give the dependence of voltage

across the capacitor on time

𝑈𝑘 = 𝑓 (𝑡). (2.4.5)

These data are used for time constant 𝜏 computing.

Taking the logarithm of the Eqs. (2.4.3) and (2.4.4), we obtain

ln
𝑞0

𝑞0 − 𝑞
=

𝑡

𝑅𝐶
=

𝑡

𝜏
, ln

𝑞0
𝑞
=

𝑡

𝜏
.

As the charge 𝑞 is proportional to the voltage across the capac-

itor 𝑈𝐶 , so we can write:

ln
𝑈0

𝑈0 − 𝑈𝑘
=

𝑡

𝜏
(for charging); (2.4.6)

ln
𝑈0

𝑈𝑘
=

𝑡

𝜏
(for discharging). (2.4.7)

To calculate the time constant 𝜏 , you need to construct graphs

of the dependence of ln
𝑈0

𝑈0 − 𝑈𝑘
(for charging) and ln

𝑈0

𝑈𝑘
(for

discharging) on time 𝑡. The value of 𝜏 is determined by using

an appropriate graph. For example, for capacitor charging (see

Fig. 2.4.v)

𝜏𝑒𝑥𝑝 =
Δ𝑡

Δ

(︃
ln

𝑈0

𝑈0 − 𝑈𝑘

)︃. (2.4.8)

By analogy, for capacitor discharging

𝜏𝑒𝑥𝑝 =
Δ𝑡

Δ

(︂
ln

𝑈0

𝑈𝑘

)︂. (2.4.9)
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Δ𝑡 is an arbitrarily chosen time interval, and the change of

functions Δ

(︂
ln

𝑈0

𝑈0 − 𝑈𝑘

)︂
(for charging) or Δ

(︂
ln

𝑈0

𝑈𝑘

)︂
(for dis-

charging) occurs within this time interval.

Step-by-step Procedure of the Experiment

Task 1. Determination of the time constant for the process of

capacitor charging.
1. Connect a resistor 𝑅𝑖 and a capacitor 𝐶𝑗 to the circuit (the

values of 𝑅𝑖 and 𝐶𝑗 are given by the instructor).
2. Switch on the setup and the oscilloscope (it should warm up

for 2–3 minutes). Get a stable picture of the dependence of

voltage across the capacitor on time 𝑈𝐶(𝑡) (see Fig. 2.4.iv).
3. Determine time coordinates of the marks on the curve of volt-

age increase by the formula 𝑡𝑘 = 𝑘Δ𝑡𝑚, where 𝑘 is the number

of a mark, Δ𝑡𝑚 is the time interval between the adjacent marks

(is given by the instructor).
4. Determine the values of the ordinates 𝑈𝑘 of the marks’ begin-

nings on the curve 𝑈𝐶(𝑡) and the maximum value of voltage

𝑈0 (see Fig. 2.4.iv). Write the data into Table 2.4.i.

5. Construct a graph of the dependence ln
𝑈0

𝑈0 − 𝑈𝑘
on time 𝑡.

Using it and Eq. (2.4.8), compute the value of 𝜏𝑒𝑥𝑝.
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6. Calculate the theoretical value of the time constant according

to the formula 𝜏𝑡ℎ = 𝑅𝑖𝐶𝑗 and compare it with 𝜏𝑒𝑥𝑝.
7. Make conclusions.

Table 2.4.i

Label #, 𝑡𝑘 = 𝑘Δ𝑡𝑚, 𝑈𝑘, 𝑈0, ln 𝑈0
𝑈0−𝑈𝑘

𝜏𝑒𝑥𝑝, 𝜏𝑡ℎ,

𝑘 𝜇s g.p. g.p. 𝜇s 𝜇s

0 0 0 0

1

2

3

4

5

Task 2. Determination of the time constant for the process of

capacitor discharging.

1. Connect a resistor 𝑅𝑖 and a capacitor 𝐶𝑗 to the circuit (the

values of 𝑅𝑖 and 𝐶𝑗 are given by the instructor).
2. Switch on the setup and the oscilloscope (it should warm up

for 2–3 minutes). Get a stable picture of the dependence of

voltage across the capacitor on time 𝑈𝐶(𝑡) (see Fig. 2.4.iv).
3. Determine time coordinates of the marks on the curve of volt-

age decrease by the formula 𝑡𝑘 = 𝑘Δ𝑡𝑚, where 𝑘 is the number

of a mark, Δ𝑡𝑚 is the time interval between the adjacent marks

(is given by the instructor).
4. Determine the values of the ordinates 𝑈𝑘 of the marks begin-

nings on the curve 𝑈𝐶(𝑡) and the maximum value of voltage

𝑈0. Write the data into Table 2.4.ii.

5. Construct a graph of the dependence ln
𝑈0

𝑈𝑘
on time 𝑡. Using

it and Eq. (2.4.9), compute the value of 𝜏𝑒𝑥𝑝.
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6. Calculate the theoretical value of the time constant according

to the formula 𝜏𝑡ℎ = 𝑅𝑖𝐶𝑗 and compare it with 𝜏𝑒𝑥𝑝.
7. Make conclusions.

Table 2.4.ii

Label #, 𝑡𝑘 = 𝑘Δ𝑡𝑚, 𝑈𝑘, 𝑈0, ln 𝑈0
𝑈𝑘

𝜏𝑒𝑥𝑝, 𝜏𝑡ℎ,

𝑘 𝜇s g.p. g.p. 𝜇s 𝜇s

0 0 0

1

2

3

4

5

After-lab Questions

Case 1.
1. What is a capacitor? Give the definition of the capacitor

capacitance.
2. What is the time constant of 𝑅𝐶–circuit? What is its physical

meaning?
3. Prove that the time constant 𝜏 of 𝑅𝐶–circuit has the dimen-

sion of time.
4. Problem. A capacitor with the capacitance 𝐶 = 200 𝜇F and a

resistor with the resistance 𝑅 = 12 Ω are connected in series

to the DC source. Find the time during which the voltage

across the capacitor has decreased to a half of its initial value.

Answer: 𝑡 = 1.67 ms.

Case 2.
1. What is a parallel-plate capacitor? Derive a formula for the

capacitance of a parallel-plate capacitor?
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2. Write the equations for the dependence of the capacitor charge

on time during the capacitor charging and discharging.

3. A parallel-plate air capacitor is charged and then disconnected

from the source of charge. What is the change in the energy

stored in the capacitor if a slab of dielectric (with the dielectric

constant 𝐾 > 1) is inserted between its plates, completely

filling this space?

4. Problem. A capacitor with the capacitance 𝐶 = 3 𝜇F and a

resistor with the resistance 𝑅 = 10 Ω are connected in series

to the DC source with ℰ = 2 V. How much charge has been

accumulated on the capacitor during the time 𝑡 = 1.5 𝜇s?
Answer: 𝑞 = 0.29 𝜇C.

Case 3.

1. What is the capacitance of an isolated conductor? Derive a

formula for calculation the capacitance of an isolated sphere.

2. Write the differential equations and their solutions for the pro-

cesses of the capacitor charging and discharging.

3. What parameters of the circuit influence the processes of the

capacitor charging and discharging?

4. Problem. A capacitor with the capacitance 100 𝜇F is being

discharged through a resistor. What is the resistance of the

resistor, if within 2 ms the charge on the capacitor has de-

creased to a half of its initial value.
Answer: 𝑅 = 28.9 Ω.

LABORATORY EXPERIMENT 2.5

DETERMINATION OF EMF OF THE DC SOURCE BY THE

COMPENSATION METHOD

Purpose of the Experiment: to get acquainted with the com-

pensation method and its application for EMF measuring of the

DC source.
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Equipment and Accessories: Veston’s standard cell; cell with

an unknown EMF (a battery); reference-voltage source; two resis-

tance boxes; microammeter.

Basic Methodology. There is a branching circuit with a volt-

age reference, resistance boxes, and two EMF (known and un-

known) which are in parallel and connected to the circuit in turn.

The unknown EMF can be determined if we (1) connect the known

EMF and adjust the resistances so that there is no current through

the specified subcircuit; (2) repeat the same steps with the un-

known EMF.

Recommended Pre-lab Reading: [1] 25.4, 26.2; [2] 27.1–

27.3; [3] 28.1, 28.3.

Pre-lab Questions

1. What is the SI unit for EMF?
2. What is the role of the source of EMF in a complete circuit?
3. What kind of forces exist inside the source of EMF? Can it be

an electrostatic force?

Theoretical Introduction

Compensation methods are widely used for measuring electrical

quantities due to their universality (you can measure EMF, volt-

age, current, resistance, and power), reliability, and high accuracy

of measurements. The main idea of the method is to balance the

measured EMF by the voltage drop across the certain subcircuit

in such a way that there is no current through the subcircuit with

the EMF.

A simplified diagram of the circuit intended for EMF measure-

ment using the compensation method is shown in Fig. 2.5.i. Cur-

rent moves from the reference-voltage source ℰ0 through the re-

sistance 𝑅 which consists of two variable resistances 𝑅1 and 𝑅2

64



(𝑅 = 𝑅1 +𝑅2). A cell with known EMF, ℰ𝑁 , is connected to the
node B through the microammeter (the source ℰ𝑁 and the cell ℰ0
are connected to the node A by the analogous poles). Resistances

of the elements AB (𝑅1) and BC (𝑅2) can be adjusted so that the

voltage drop across the element AB is equal to the EMF of the

cell ℰ𝑁 (meanwhile their total resistance 𝑅 is unchangeable). In

this case, the microammeter shows no current.

According to the first Kirchhoff’s rule for the node A,

𝐼1 + 𝐼2 − 𝐼 = 0. (2.5.1)

By using the second Kirchhoff’s rule for the loop Bℰ𝑁AB, we
get the following equation:

ℰ𝑁 = 𝐼2(𝑟 +𝑅𝐴) + 𝐼𝑅1, (2.5.2)

where 𝑟 is the internal resistance of the cell ℰ𝑁 ; 𝑅𝐴 is the resistance

of the microammeter.

EX 

µµµµ A   

EN 

Sw 

E0 

R1 R2 

C 

B 

I 2 

I 1 
I 

A 

Figure 2.5.i

If the compensation has been achieved, there is no current in

the above mentioned loop (𝐼2 = 0) and Eqs. (2.5.1) and (2.5.2)
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have the following form:

𝐼1 = 𝐼 ; ℰ𝑁 = 𝐼𝑅1. (2.5.3)

And now let’s replace the cell ℰ𝑁 by using the switcher Sw (see

Fig. 2.5.i) with the cell ℰ𝑋 with the unknown EMF and change

the resistances 𝑅1 and 𝑅2 (the total 𝑅 is unchangeable) so that no

current will go through the microammeter. It holds under the new

value of resistance of the element AB, and instead of Eq. (2.5.3)

we can write

𝐼1 = 𝐼 ; ℰ𝑋 = 𝐼𝑅𝑋 . (2.5.4)

From the Eqs. (2.5.3) and (2.5.4) we get a formula for an un-

known EMF:

ℰ𝑋 = ℰ𝑁
𝑅𝑋

𝑅1
. (2.5.5)

The circuit diagram of the laboratory installation is shown in

the Fig. 2.5.ii. The standard Veston’s cell is used as the known

EMF ℰ𝑁 . It is a variant of galvanic cells. The potential difference
between the electrodes of the Veston’s cell arises because of the

oxidation-reduction reactions which occur in the saturated solu-

tion of the cadmium sulphate with the addition of mercury and

mercury sulphate. The electromotive force of the Veston’s cell is
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reproduced with fine precision that is why it is used as a standard.

At 20∘C, its EMF is ℰ𝑁 = 1.0183 V. A battery is used as a cell with

unknown EMF ℰ𝑋 . It is connected to the reference-voltage source
ℰ0 by the same poles as the standard cell ℰ𝑁 . The keyK1 switches

the reference-voltage source. The knob Kn is for short-term clos-

ing of circuit of the microammeter. 𝑅3 is a high (about 104 Ω)

resistance which protects the microammeter and the standard cell

from high currents going through them under a preliminary rough

compensation. The key K2 is used for short-circuit of the re-

sistance 𝑅3 under an accurate compensation. Resistance boxes

𝑅1 and 𝑅2 are used as variable resistances. The compensation is

achieved by the adjustment of resistances under the condition of

a constancy of their total resistance.

Step-by-step Procedure of the Experiment

1. Set the value of 20 kΩ to each of resistance boxes 𝑅1 and 𝑅2.

2. Place the battery into a jack for unknown EMF (REMEM-

BER: its polarity in the circuit should be the same as the

polarity of the cell ℰ𝑁).
3. Close the key K1.

4. Set the switcher Sw in the position 1 for standard cell connect-

ing to the circuit. The key K2 is opened (that is the position

“Rough” (“Грубо”)).

5. Obtain no current through the microammeter during the short-

term pressing of the button Kn. For this, use three first

decades of the resistance boxes (×10000, ×1000, ×100) to

change the resistances 𝑅1 and 𝑅2 so that their sum remains

constant, i.e. 40 kΩ.

6. Obtain more accurate compensation of the current through

the microammeter, by closing the key K2 (the position “Ac-

curate” (“Точно”)) and repeating step 5. Use other decades of
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resistance boxes. Record the value 𝑅1 of the first resistance

box when there is no current through the microammeter.
7. With the switcher Sw, switch the battery in the circuit instead

of the standard cell ℰ𝑁 .
8. Repeat steps 5 and 6, and find out the value of the resistance

𝑅𝑋 of the first resistance box in this case.
9. Using Eq. (2.5.5) calculate the EMF of a battery.
10. Make conclusions.

After-lab Questions

Case 1.
1. What conditions are necessary for a steady electrical current

to exist?
2. Write down the Ohm’s law for a complete circuit.
3. Explain why the direct measurement of EMF of the source

with voltmeter is not accurate.
4. Problem. Firstly a source of current was connected to the ex-

ternal resistance𝑅1 = 2 Ω, and then, to the external resistance

𝑅2 = 0.5 Ω. In each case power 𝑃 which is extracted in the

external circuit is the same and equal to 2 W. Find the EMF

of a source and its internal resistance.
Answer: ℰ = 3 V, 𝑟 = 1 Ω.

Case 2.
1. What is an electromotive force of a source and voltage across

a circuit element?
2. Formulate and write down Kirchhoff’s rules.
3. Write down the Ohm’s law for current density.
4. Problem.A copper transmission cable 100 km long and 10.0 cm

in diameter carries a current of 125 A. (a) What is the poten-

tial drop across the cable? (b) How much electrical energy is

dissipated as the thermal energy every hour? Resistivity of

copper is 1.72 · 10−8 Ω m.
Answer: a) 𝑉 = 27.39 V, b) 𝐸 = 1.23 · 107 J.
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Case 3.

1. Write down the Ohm’s law for elements of a circuit with a

source of EMF and without it.

2. What is a terminal voltage?

3. Derive an expression for power extracted from a circuit ele-

ment.

4. Problem. Voltmeter and resistance are connected in series.

The voltage across this circuit element is 𝑈0 = 120 V. When

the resistance value is 𝑅 = 104 Ω, the voltmeter reading is

𝑈1 = 40 V. What resistance 𝑅𝑥 would be if the voltmeter

reading is 𝑈2 = 10 V.
Answer: 𝑅𝑥 = 5.5 · 104 Ω.

LABORATORY EXPERIMENT 2.10

ELECTRON SPECIFIC CHARGE MEASUREMENTS BY

MEANS MAGNETRON METHOD

Purpose of the Experiment: to determine electron specific

charge and compare it with tabulated value.

Equipment and Accessories: vacuum diode; filament power

source; adjustable power source of the anode circuit; solenoid and

its power source; ammeters and voltmeter.

Basic Methodology. The critical value of the magnetic field

that influences electron’s motion in the vacuum diode is deter-

mined based on the shape of the anode current curve. The specific

charge of the electron is calculated from the relations of the volt-

age applied to the diode, the magnitude of the critical magnetic

field, and the radii of the electrodes of the diode.

Recommended Pre-lab Reading: [1] 27.4, 27.5; [2] 28.2,

28.3; [3] 29.2, 29.3.
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Pre-lab Questions
1. What is a specific charge of a particle?
2. What force acts upon the charge particle moving in the electric

and magnetic field?
3. What is the magnetron?

Theoretical Introduction

Specific charge of an elementary particle is the ratio of the

particle charge to its mass. To determine the electron specific

charge, we will use the magnetron method. The method utilizes

the features of charged particles motion in crossed electric and

magnetic fields. Magnetron is a cylindrically symmetric vacuum

diode placed inside a concentric solenoidal coil. The experiment

is conducted with the setup shown in Fig. 2.10.i.

The main element of the installation is a vacuum diode with

coaxial cylindrical electrodes: the cathode C and the anode A

(Fig. 2.10.ii). The electrodes are placed in a glass tube. During

its manufacturing, the tube was evacuated and sealed.

The cathode of the diode is heated by the direct current of a

filament power source. The thermionic emission of electrons takes

place from the surface of the heated cathode. Space charge re-

gion or electron cloud is created near the surface of the cathode.
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The size of this region depends on the potential difference be-

tween cathode and anode. Emitted electrons in the space charge

move randomly, and the velocity distribution of emitted electrons

is Maxwellian. Electrons are pulled out of the space charge cloud

by an external radial electric field (the field lines are shown in

Fig. 2.10.ii). As a result, electrons are accelerated from the cath-

ode toward the anode.

The magnitude of the electric field in the interelectrode space

is given by an equation

𝐸 = − 𝑈𝑎

𝑟 ln
𝑟𝑎
𝑟𝑐

,

where 𝑈𝑎 is the potential difference between anode and cathode

(anode voltage); 𝑟𝑎 and 𝑟𝑐 are the radii of anode and cathode,

respectively; 𝑟is the distance from the axis of the system to the

considered point.

The vacuum diode is placed inside the solenoid. Uniform mag-

netic field is created by the current in the solenoid. The value

of the magnetic field 𝐵 can be adjusted by changing the solenoid

current 𝐼𝑠. Vector B⃗ is parallel to the diode axis of symmetry.

The Lorentz force F⃗𝐿 is acting upon the charged particle with

the charge 𝑞 = −𝑒 (𝑒 is the elementary charge) moving with the

velocity v⃗ in the the electric field E⃗ and magnetic field B⃗

F⃗𝐿 = −𝑒
(︁
E⃗ + v⃗× B⃗

)︁
.

According to the Newton’s second law,

𝑚
𝑑v⃗

𝑑𝑡
= F⃗𝐿,

where 𝑚 is the mass of a particle. Thus, the equation of the

electron motion is

𝑑v⃗

𝑑𝑡
= − 𝑒

𝑚

(︁
E⃗ + v⃗× B⃗

)︁
. (2.10.1)
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To describe the motion of an electron in the gap between coax-

ial cylindrical electrodes, it is convenient to use a cylindrical co-

ordinate system (𝑟, 𝜙, 𝑧) with 𝑍-axis aligned along the uniform

magnetic field B⃗ (see Fig. 2.10.ii). The projections of Eq. (2.10.1)

in this coordinate system is the following

𝑑2𝑧

𝑑𝑡2
= 0,

𝑑2𝑟

𝑑𝑡2
− 𝑟

(︂
𝑑𝜙

𝑑𝑡

)︂2

=
𝑒

𝑚

(︂
𝐸 − 𝑟

𝑑𝜙

𝑑𝑡
𝐵

)︂
,

2
𝑑𝑟

𝑑𝑡

𝑑𝜙

𝑑𝑡
+ 𝑟

𝑑2𝜙

𝑑𝑡2
=

𝑒

𝑚

𝑑𝑟

𝑑𝑡
𝐵,

(2.10.2)

where
𝑑𝑧

𝑑𝑡
= 𝜐𝑧,

𝑑𝑟

𝑑𝑡
= 𝜐𝑟, and 𝑟

𝑑𝜙

𝑑𝑡
= 𝜐𝜙 is an azimuthal, radial,

and polar component of the velocity vector v⃗ respectively.

Lets assume that the initial velocity of an electron at the cath-

ode surface is zero. Then an electron will move only in the plane

(𝑟, 𝜙) under the influence of the Lorentz force. Solving the last
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equation of the set (2.10.2), we obtain

𝑑𝜙

𝑑𝑡
=

𝑒𝐵

2𝑚

(︂
1− 𝑟2𝑐

𝑟2

)︂
. (2.10.3)

Since the magnetic component of the Lorentz force does not

perform work on charged particles, the electron energy is gained

only from the electric field. The work 𝑒𝑈𝑎 done by the electric

field on an electron when moving from cathode to anode is equal

to electron kinetic energy

𝑒𝑈𝑎 =
𝑚

2

(︀
𝜐2
𝑟 + 𝜐2

𝜙

)︀
. (2.10.4)

The Pythagorean theorem is applied to the speed of electron,

since radial and polar components of the electron velocity are mu-

tually perpendicular. Substituting (2.10.3) into Eq. (2.10.4) we

obtain:

𝑒𝑈𝑎 =
𝑚

2

(︂
𝜐2
𝑟 +

𝑒2𝐵2

4𝑚2𝑟2𝑎

(︀
𝑟2𝑎 − 𝑟2𝑐

)︀2)︂
. (2.10.5)

Lets consider the trajectory of an electron in the inter-electrode

gap with the potential difference 𝑈𝑎 (Fig. 2.10.iii).

Electrons move radially from cathode to anode if no magnetic

field is applied (trajectory 1). The trajectory of electrons is curved

(trajectory 2) for a non-zero magnetic field. If the magnetic field

becomes strong enough, the electrons can never reach the anode

(trajectory 3′). The trajectory of an electron is tangent to the an-

ode (trajectories 3) at a certain critical value of magnetic field 𝐵𝑐𝑟.

Obviously, when 𝐵 = 𝐵𝑐𝑟, the radial component of the electron

velocity vanishes and Eq. (2.10.5) takes the form

𝑒𝑈𝑎 =
𝑒2𝐵2

𝑐𝑟

8𝑚𝑟2𝑎

(︀
𝑟2𝑎 − 𝑟2𝑐

)︀2
. (2.10.6)
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Thus, to determine the specific charge of an electron, one can

use Eq. (2.10.6) if the value of 𝐵𝑐𝑟 is measured:

𝑒

𝑚
=

8𝑈𝑎𝑟
2
𝑎

𝐵2
𝑐𝑟 (𝑟

2
𝑎 − 𝑟2𝑐)

2 . (2.10.7)

There is a current 𝐼𝑎 in a vacuum diode due to the motion of

thermal electrons from cathode to anode. If the magnetic field 𝐵

is stronger than the critical value 𝐵𝑐𝑟, the electrons form a space

charge region around the cathode, screening it, and the current

going through the diode drops to zero. Fig. 2.10.iv shows the de-

pendence of the diode current 𝐼𝑎 on the magnitude of the magnetic

filed 𝐵 of the solenoid. The dashed curve corresponds to the case

when the initial velocity of electrons is zero at the cathode sur-

face, as previously assumed. The critical conditions are reached

for different electrons under different values of magnetic field in a

real case of a Maxwellian distribution of the initial electron veloc-

ities. In this case the dependence of 𝐼𝑎(𝐵) is the curve shown in

Fig. 2.10.iv solid line.
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Not ideal cylindrical symmetry of the diode, alignment of lamp

electrodes and solenoid, and a number of other factors lead to an

additional smoothing of the curve. Nevertheless, the curve 𝐼𝑎(𝐵)

bend is sufficiently sharp to determine the critical value of the

magnetic field.

Step-by-step Procedure of the Experiment

1. Check that the elements are connected according to the scheme

depicted in Fig. 2.10.i. The handles of voltage regulators of

the diode and the solenoid must be turned counterclockwise

until the end. Turn on the equipment.
2. Turn on the power source of anode voltage and establish the

value of anode voltage 𝑈𝑎, indicated on the equipment. Wait

five minutes until the cathode is warmed up. While conduct-

ing measurements, keep an eye on the anode voltage. It must

be constant through the experiment.
3. Turn on the power supply of the solenoid. Varying the value of

the current in the solenoid from zero to the maximum possible

one, take the dependence of the anode current vs. the current

in the solenoid 𝐼𝑎(𝐼𝑠).
4. Plot a graph 𝐼𝑎 versus 𝐼𝑠, based on the data you have mea-

sured.
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5. Determine the critical solenoid current 𝐼𝑠.𝑐𝑟 that corresponds

to the highest slope of the curve 𝐼𝑎(𝐼𝑠).
6. Calculate the critical value of the magnetic filed 𝐵𝑐𝑟 based on

the found value 𝐼𝑠.𝑐𝑟 with the help of the expression

𝐵𝑐𝑟 = 𝑘𝐼𝑠.𝑐𝑟.

The value of constant 𝑘 specified at the equipment.
7. Calculate the value of the electron specific charge according

to Eq. (2.10.7).
8. Analyze the results, make conclusions.

After-lab Questions

Case 1.
1. Write an expression for the force exerted on a charged particle

in the electric field.
2. Explain why the magnetic force does not perform work on a

charge particle.
3. An electron enters a uniform magnetic field at a sharp angle

to the field lines. Draw its trajectory. Explain it.
4. Problem. Proton and electron enter a uniform magnetic field

perpendicular to the field lines. Speeds of the particles are the

same. What is the ratio of the radii of curvature of the proton

and the electron trajectories?
Answer: 𝑅𝑝/𝑅𝑒 = 1836.

Case 2.
1. Write an expression for the force exerted on a charged particle

moving in the magnetic field.
2. How does the work of the force that acts on a charged particle

moving in an electric field defined?
3. Proton enters a uniform crossed electric and magnetic fields

along the electric field lines. Draw the trajectory of its motion.

Explain the behavior of the proton.
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4. Problem. The cyclotron is designed to accelerate protons to

the energies of 5 MeV. What is the smallest radius 𝑅 of the

cyclotron dees. The magnetic field 𝐵 = 1 T.
Answer: 𝑅 > 0.32 m.

Case 3.
1. Write an expression for the Lorentz force.
2. 𝛼–particle enters uniform magnetic field along the field line.

Explain the behavior of the particle and draw its trajectory.
3. Make examples of using the technical characteristics of the

motion of charged particles in crossed electric and magnetic

fields.
4. Problem. An electron enters a uniform magnetic field perpen-

dicular to the field lines. Find the cyclotron frequency if the

magnetic field 𝐵 = 2 · 10−2 T.
Answer: 𝜔 = 3.5 · 109 rad/s.

LABORATORY EXPERIMENT 2.13

MAGNETIC FIELD OF A COIL AND SYSTEMS OF TWO

COILS

Purpose of the Experiment: to investigate the magnetic field

at the axis of the short coil, to verify the Biot-Savart law and the

superposition principle.

Equipment and Accessories: two identical short coils; AC

current source; ammeter; probe for measuring magnetic field; mil-

livoltmeter.

Basic Methodology. The value of EMF induced in a small

probe-coil is proportional to the peak magnitude of magnetic filed

created by a circular coil conducting an AC-current. By measuring

this EMF for different positions of the probe, the time varying

magnetic field produced by the large field coil can be mapped out.
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Recommended Pre-lab Reading: [1] 28.2, 28.5, 29.2;

[2] 29.4, 30.1; [3] 30.1; 31.1.

Pre-lab Questions

1. What unit is used to measure magnetic filed?
2. Write an expression for Biot-Savart law. Draw a picture to

explain it.
3. Formulate Faraday’s law.

Theoretical Introduction

The magnetic field of a coil and a system of two coils is inves-

tigated with a setup shown schematically in Fig. 2.13.i. Two coils

𝐿1 and 𝐿2 are coaxial and have the same parameters: the average

radius 𝑅 = 6.5 cm, the length of coils 𝑙 = 2.5 cm, and the number

of turns 𝑁𝐶 = 290. The coil 𝐿1 is a motionless solenoid while the

position of 𝐿2 is changeable along the X-axis of the system. The

probe Z is used to measure the magnetic filed created by a coil.

The position of the probe Z is also changeable along the axis of

the coils. The separation between coils and the probe position is

determined by the scale on their holders.

The magnetic field measurements are based on the the phe-

nomenon of electromagnetic induction. The probe is a small coil

with a large number of turns. If the probe is placed in an alter-

nating magnetic field, according to Faraday’s law, the EMF would

be induced in it:

ℰ𝑖 = −𝑑Ψ𝑚

𝑑𝑡
= −𝑁𝐴

𝑑𝐵

𝑑𝑡
,

where Ψ is a net magnetic flux; 𝐴 is a cross-section area of the

probe coil; 𝑁 is a the number of the turns in the probe. Since

probe is small in-seize, we assume that the magnetic field 𝐵 is

uniform along the area of the probe. The cross-section of the

search coil is normal to the axis of the system.
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An AC current of 𝑓 = 50 Hz frequency is used to produce an

alternating magnetic filed by 𝐿1 and 𝐿2 coils. The magnitude of

the field can be written as

𝐵(𝑡) = 𝐵max cos(𝜔𝑡 + 𝜙0),

where 𝐵max is the peak value of magnetic induction, 𝜔 = 2𝜋𝑓 is

an angular frequency of AC current, and 𝜙0 is an initial phase

shift. Thus,
𝑑𝐵

𝑑𝑡
= −𝜔𝐵max sin (𝜔𝑡 + 𝜙0) .

If the probe is located in the vicinity of the coil, the induced

EMF is

ℰ = 𝑁𝐴𝜔𝐵max sin (𝜔𝑡 + 𝜙0) ,

where 𝑁𝐴𝜔𝐵max = ℰ0 is the peak value of the induced electro-

motive force. The EMF of the probe is measured by an AC-

millivoltmeter. It shows the effective value of the voltage:

𝑈 =
ℰ0√
2
=

𝑁𝐴𝜔√
2

𝐵max.
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Thus, by measuring the voltage 𝑈 induced on the probe, one

can find the peak value of the magnetic field at the position of the

probe:

𝐵max =

√
2

𝑁𝐴𝜔
𝑈. (2.13.1)

The expression of the magnetic field 𝐵 on the axis of circular

loop with current 𝐼 can be obtained based on the Biot-Savart’s

law and the superposition principle:

𝐵 =
𝜇0𝐼𝑅

2

2 (𝑅2 + 𝑥2)3/2
, (2.13.2)

where 𝑅 is the radius of the loop, 𝑥 is the distance from the center

of the loop to the observation point (Fig. 2.13.ii),

𝜇0 = 4𝜋 · 10−7 H/m is the magnetic constant. Magnetic field

at the center of the circular current loop (x = 0) is calculated as

follows:

𝐵0 =
𝜇0𝐼

2𝑅
. (2.13.3)

Substituting 𝐵0 from this equation into Eq. (2.13.2), the latter

can be rewritten as

𝐵 = 𝐵0
𝑅3

(𝑅2 + 𝑥2)3/2
=

𝐵0(︁
1 + (𝑥/𝑅)2

)︁3/2 . (2.13.4)

If the coil length is much smaller than the diameter (short

solenoid) and contains 𝑁𝐶 loops that are closely spaced, then the

magnetic field of such a coil is approximately equal to the mag-

netic field of a circular loop with the current 𝑁𝐶 times higher than

for one loop. Therefore at the axis of the coil, the magnetic field

can be approximately determined by Eq. (2.13.4).

According to Eq. (2.13.1), the magnetic field 𝐵(𝑥) of the coil is

proportional to the induced voltage 𝑈(𝑥) on the probe where 𝑥 is
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the position of the probe. Thus, the relative value of the magnetic

field 𝐵(𝑥)/𝐵0 can be determined experimentally(︂
𝐵(𝑥)

𝐵0

)︂
𝑒𝑥𝑝

=
𝑈(𝑥)

𝑈0
. (2.13.5)

The theoretical expression for a relative magnetic field at the

axis of the coil is represented by a function

𝑓 (𝑥) =

(︂
𝐵(𝑥)

𝐵0

)︂
𝑡ℎ

=
1(︁

1 + (𝑥/𝑅)2
)︁3/2 . (2.13.6)

After comparing the results of the experimental (2.13.5) and

theoretical (2.13.6) values of the relative magnetic field at the axis

of the coil, one can conclude on the validity of assumptions.

We use two identical coils 𝐿1 and 𝐿2 to verify the superposition

principle (see Fig. 2.13.i). The resulting magnetic field created by

two coils with current is the following

B⃗ = B⃗1 + B⃗2, (2.13.7)

where B⃗1 and B⃗2 are fields of a coil 𝐿1 and 𝐿2 respectively.

If two coils are coaxial and the direction of the current is the

same for both of them, then vectors B⃗1 and B⃗2 at the axis of
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Table 2.13.i

𝑥, cm 0 2 4 6 ... ... 30

𝑈1, mV
𝐵1(𝑥)

𝐵0

𝑓 (𝑥)

the system have the same direction. Thus, Eq. (2.13.7) can be

rewritten for magnetic field magnitudes only

𝐵(𝑥) = 𝐵1 (𝑥) +𝐵2 (𝑥) . (2.13.8)

This equation can be verified experimentally by measuring the

magnetic fields of individual coils and the resulting field of two

coils. The theoretical value calculated by Eq. (2.13.8) can be com-

pared with the experimental one.

Step-by-step Procedure of the Experiment

Task 1. The magnetic field of a single coil.

1. Connect the power supply to the terminals “ 1 ” and “ 1′ ” of

the coil 𝐿1 and establish an effective circuit current of 𝐼 = 1 A.

2. Check the location of the probe (it should be located in the

middle of the coil 𝐿1 which corresponds to the coordinate

𝑥 = 0 cm).

3. Measure probe voltage with a millivoltmeter 𝑈1(𝑥).

4. Repeat measurements, shifting the probe along the axis of the

coil with increments of 2 cm. Write the measured data into

Table 2.13.i.

5. Calculate the corresponding relations 𝐵1(𝑥)/𝐵0 according to

Eq. (2.13.5) where 𝐵1(0) = 𝐵0. Tabulate calculations at Ta-

ble 2.13.i.
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Table 2.13.ii

𝑥, cm 0 2 4 6 ... ... 30

𝑈2, mV
𝐵2(𝑥)

𝐵0

𝑈1+2, mV
𝐵1+2(𝑥)

𝐵0
𝐵1(𝑥) +𝐵2(𝑥)

𝐵0

6. Calculate the corresponding values of the function 𝑓 (𝑥)

(Eq. 2.13.6) for all positions 𝑥 from Table 2.13.i and put them

onto the table.
7. Plot the dependences 𝐵1(𝑥)/𝐵0 and 𝑓 (𝑥) vs. position 𝑥 of

the probe at the same graph. Compare the curves and make

conclusions.

Task 2. The magnetic field of two coils. The superposition

principle.

1. Place the coil 𝐿2 at the distance specified by instructor from

the first coil. Connect the power supply to the terminals “ 2 ”

and “ 2′ ” of the coil 𝐿2 (see Fig. 2.13.i). Coil 𝐿1 should be

disconnected.
2. Establish a circuit current of 𝐼 = 1 A. Measure the voltage of

the probe 𝑈2(𝑥) and calculate the ratio 𝐵2(𝑥)/𝐵0 for coil 𝐿2.

Take into account that ratio is equal to 1 at the position of

the coil 𝐿2. Enter the data into Table 2.13.ii.
3. Disconnect the power supply.
4. Connect the coils 𝐿1 and 𝐿2 in serial. The direction of the

current in the coils have to be the same. Connect the power
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supply and establish the circuit current of 0.5 A.

5. Measure voltage 𝑈1+2(𝑥) induced in a probe by alternating

magnetic filed of both coils. To make results comparable to

the data obtained in the first task, double the measured value

of 𝑈1+2(𝑥). Calculate ratio
𝐵1+2(𝑥)

𝐵0
. Take into account that

𝐵0 = 𝐵(0). Write the data to Table 2.13.ii.

6. Calculate the sum of two fields of both coils
𝐵1(𝑥) +𝐵2(𝑥)

𝐵0
.

Add the data to Table 2.13.ii.

7. Build the a plots of
𝐵1(𝑥)

𝐵0
,
𝐵2(𝑥)

𝐵0
,
𝐵1+2(𝑥)

𝐵0
, and

𝐵1(𝑥) +𝐵2(𝑥)

𝐵0
vs. position 𝑥 of the probe at the same graph.

8. Compare theoretical and experimental curves of the resulting

magnetic field. Make conclusions.

After-lab Questions

Case 1.

1. Write an expression for Biot-Savart law. Draw a picture to

explain it.

2. Derive an expression for the magnetic field at the center of

the current loop.

3. What phenomenon is used to measure the magnetic field in

this experiment?

4. Problem. The long wire carrying a current of 𝐼 = 4 A is bent

at the angle 𝜑 = 120∘. Find the magnetic field at a distance

𝑎 = 5 cm from the vertex of the angle on its bisector.
Answer: 𝐵 = 2.4 · 10−5 T.

Case 2.

1. State the superposition principle of fields.

2. Derive an expression for the magnetic field of an infinitely long

solenoid.

3. How does the radius of the coil affect the magnetic field?

84



4. Problem. Current 𝐼 = 30 A flows along a straight-line segment

of wire with the length 𝑙 = 80 cm. Find the magnetic field

at a point equidistant from the ends of the segment and at a

distance 𝑟0 = 30 cm from the wire.
Answer: 𝐵 = 1.6 · 10−5 T.

Case 3.
1. Formulate Ampere’s circulation law of the vector B⃗. Draw a

picture to explain it.
2. Derive an expression for calculating a magnetic field of a long

straight current-carrying conductor.
3. Calculate the relative magnetic field at the axis of the system

created by two coils if the separation distance between them

is equal to their radius. Perform calculation at the position of

the coils and in the middle between them.
4. Problem. A very long straight horizontal wire carries a current

such that 5 ·1020 electrons per second pass any given point go-
ing from west to east. What are the magnitude and direction

of the magnetic field this wire produces at a point 40.0 cm

directly above it?
Answer: 𝐵 = 4 · 10−5 T.

LABORATORY EXPERIMENT 2.15

FARADAY’S LAW OF ELECTROMAGNETIC INDUCTION

Purpose of the Experiment: to investigate experimentally

the phenomenon of electromagnetic induction and to verify Fara-

day’s law.

Equipment and Accessories: solenoid with two coaxial wind-

ings, generator of sawtooth signal, double–channels oscilloscope.

Basic Methodology. The sawtooth voltage is applied to one

of two coaxial coils. The electromotive force is induced in the sec-
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ond coil. Patten of this EMF is observed at the oscilloscope screen.

Faraday’s law is verified by comparing experimentally measured

and theoretically calculated value of EMF induced in the second

coil under different frequencies and amplitudes of the sawtooth

signal.

Recommended Pre-lab Reading: [1] 29.2; [2] 30.1; [3] 31.1.

Pre-lab Questions

1. What is the SI unit of a magnetic flux?
2. Formulate Faraday’s law of electromagnetic induction.
3. Formulate Lenz’s law.

Theoretical Introduction

The diagram of installation used in this experiment is shown in

Fig. 2.15.i. It consists of a solenoid with two coaxial coils 𝐿1 and

𝐿2. They are wound on the same hollow cylinder. Lengths 𝑙1 and

𝑙2 of the coils, number of turns 𝑁1 and 𝑁2, and diameter 𝐷 of the

cylinder are specified on the equipment.

Sawtooth voltage 𝑈1 is applied to the coil 𝐿1 from the generator

G. The frequency of teeth is in a range 𝜈 = 500...1000 Hz. Total

86



resistance 𝑅 of the circuit with the 𝐿1 coil is 50 Ω. Magnetic field

created by a current 𝐼1 in the coil 𝐿1 is:

𝐵1 = 𝜇0
𝑁1𝐼1
𝑙1

,

here 𝜇0 = 4𝜋 · 10−7 H/m is a magnetic constant.

Mutual magnetic flux of the coil 𝐿2 is created by the field 𝐵1

Ψ𝑚2 = 𝑁2𝐵1𝐴 = 𝜇0
𝑁1𝑁2

𝑙1
𝐴𝐼1,

where 𝐴 is the cross-sectional area of the solenoid.

According to Faraday’s law, the EMF should be induced in the

coil 𝐿2 if the value of the mutual magnetic flux Ψ𝑚2 varies in time:

ℰ𝑖 = −𝑑Ψ𝑚2

𝑑𝑡
= −𝜇0

𝑁1𝑁2𝐴

𝑙1

𝑑𝐼1
𝑑𝑡

. (2.15.1)

The current in the first coil is directly proportional to the volt-

age applied and reversely proportional to the resistance of the

circuit:

𝐼1 =
𝑈1

𝑅
.

Thus, Eq. (2.15.1) can be written as:

ℰ𝑖 = −𝜇0
𝑁1𝑁2𝐴

𝑙1𝑅

𝑑𝑈1

𝑑𝑡
. (2.15.2)

Faraday’s law of electromagnetic induction can be verified by

comparing the experimental value of the EMF induced in the coil

𝐿2 to the one calculated by Eq. (2.15.2).

The graph of the voltage versus time is observed at the screen

of the oscilloscope. The vertical input (Y1) of the first channel of

the oscilloscope is under the signal proportional to the voltage 𝑈1

applied to the first coil. The EMF ℰ𝑖 induced on the coil 𝐿2 is

applied to the vertical input (Y2) of the second channel. Since the
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time derivative of the sawtooth signal is a constant over the half

of the period (Fig. 2.15.ii), Eq. (2.15.2) can be written as

ℰ𝑖 = −𝜇0
𝑁1𝑁2𝐴

𝑙1𝑅

Δ𝑈1

Δ𝑡
. (2.15.3)

Step-by-step Procedure of the Experiment

1. Verify connection of generator and oscilloscope to the coils

(see Fig. 2.15.i). Turn on the power of all your laboratory

equipment. Assign the frequency of the output voltage on

generator 𝑓1 = 500 Hz. Use oscilloscope to evaluate frequency.

2. Achieve a stable picture at the screen of oscilloscope, similar

to Fig. 2.15.ii. Use the scale control handles over time axis 𝑡

(“ms/g.p.”) and voltage axis 𝑈 (“V/g.p.”) and handle “Stabi-

lization”.

3. Use the pattern at the oscilloscope screen to define values of

Δ𝑈1, ℰ𝑒𝑥𝑝1, and time interval Δ𝑡1 (see Fig. 2.15.ii).

4. Substitute magnitudes Δ𝑈1 and Δ𝑡1 to Eq. (2.15.3) and cal-

culate the average theoretical value of ⟨ℰ𝑡ℎ⟩1.
5. Compare values of ℰ𝑒𝑥𝑝1 and ⟨ℰ𝑡ℎ⟩1.
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6. Repeat measurements with the oscillation frequency of the

output voltage 𝑓2 = 1000 Hz and the same amplitude of the

voltage Δ𝑈1. Compare ℰ𝑒𝑥𝑝2 and ⟨ℰ𝑡ℎ⟩2.
7. Repeat measurements with the frequency 𝑓3 = 𝑓1 = 500 Hz of

the sawtooth signal and double amplitude of the voltage Δ𝑈1.

Compare the magnitudes of ℰ𝑒𝑥𝑝3 and ⟨ℰ𝑡ℎ⟩3.

8. Check the equality in the following ratios:
ℰ𝑒𝑥𝑝2
ℰ𝑒𝑥𝑝1

and
Δ𝑡1
Δ𝑡2

;

ℰ𝑒𝑥𝑝1
ℰ𝑒𝑥𝑝3

and
Δ𝑈1

Δ𝑈3
. Make conclusions.

After-lab Questions
Case 1.

1. Provide the definition of the magnetic flux. Write the expres-

sion of the magnetic flux through an arbitrary surface.

2. Formulate the Lenz’s law.

3. Why is the sawtooth signal applied to a first coil?

4. Problem. The EMF 𝜋𝑡 (in SI units) is induced in a circular

loop placed in a uniform magnetic field that varies with time.

The radius of the loop is 1 m. The magnetic field lines make

an angle of 60∘ with the normal to the plane of the loop. Find

magnetic field 𝐵(𝑡) as a function of time, given that it started

from zero (𝐵(0) = 0).
Answer: 𝐵 = 𝑡2.

Case 2.

1. A loop of wire is placed in a uniform magnetic field. For what

orientation of the loop is the magnetic flux a maximum? For

what orientation is the flux zero?

2. Formulate and write Gauss’s law for magnetic field. What

information is unhidden by this law about magnetic field?

3. Why the induced EMF is negative when the voltage in the

first coil is increasing?
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4. Problem. The coil of diameter 𝐷 = 8 cm and 𝑁 = 80 turns

is placed in a uniform magnetic field 𝐵 = 0.06 T. The coil is

turned to an angle of 180∘ in Δ𝑡 = 0.2 s, and its axis remains

parallel to the magnetic field lines. Find an average EMF

induced in the coil.
Answer: ℰ𝑖 = 0.24 V.

Case 3.
1. Formulate the Lens’s law.
2. Why is the magnetic flux through an arbitrary closed surface

equal to zero?
3. Why do the square-wave pulses arise in the second coil if the

sawtooth signal is applied to a fist coil?
4. Problem. The circular loop of radius 𝑟 = 4 cm and resistance

𝑅 = 3.14 Ω is placed in a uniform magnetic field 𝐵 = 0.125 T.

The angle between the plane of the loop and field lines is

30∘. What charge will be induced in the loop if magnetic field

disappears?
Answer: 𝑞 = 10−4 C.

LABORATORY EXPERIMENT 2.16

DETERMINATION OF THE ANGLE OF MAGNETIC

INCLINATION

Purpose of the Experiment: to determine the angle of mag-

netic inclination and the value of the magnetic field of the Earth

by using ballistic method.

Equipment and Accessories: inductor I; ballistic galvanome-

ter G.

Basic Methodology. An inductor coil can be rotated about

horizontal and vertical axes. A change of the Earth magnetic field

flux through the coil causes an induced current in it. Current

magnitude and, therefore, amount of charge passed through the
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circuit, are proportional to the corresponding component of the

Earth magnetic field. By measuring the passed charge for two

ways of rotation, horizontal and vertical components of the Earth

magnetic field and the angle of magnetic inclination can be calcu-

lated.

Recommended Pre-lab Reading: [1] 27.1, 29.1, 29.2, 29,3;

[2] 28.3, 30.1; [3] 31.1, 31.3.

Pre-lab Questions

1. Define the magnetic flux. What is the expression for magnetic

flux through a plane surface in a uniform magnetic field?

2. What is a magnetic field line? What is the direction of these

lines?

3. Formulate Faraday’s Law.

Theoretical Introduction

Earth has a magnetic field like that of a huge bar magnet.

Earth’s north geographic pole is close to a magnetic south pole

that is why the north pole of a compass needle points north and

magnetic field lines are directed from south to north (Fig. 2.16.i).

The Earth magnetic axis is not quite parallel to its geographic axis

(the axis of rotation), so a compass reading deviates somewhat

from the geographic north. This deviation which varies with lo-

cation is called magnetic declination, or magnetic variation. Also,

the magnetic field is not horizontal at most points on the Earth

surface; its angle (up or down) is called magnetic inclination. At

the magnetic poles, the magnetic field is vertical and the angle of

magnetic inclination is 90∘.

At each point, magnetic field of the Earth B⃗𝐸 can be decom-

posed into vertical B⃗𝑣 and horizontal B⃗ℎ components:

B⃗𝐸 = B⃗𝑣 + B⃗ℎ. In Fig. 2.16.ii, the angles of inclination, 𝜙, and
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declination, 𝜃, are shown. If vertical and horizontal components

are known, the angle of inclination 𝜙 can be computed as

𝜙 = arctan
𝐵𝑣

𝐵ℎ
. (2.16.1)

In this experiment, a modification of the ballistic method, based

on electromagnetic induction phenomenon, is used to measure

magnitudes of the vertical B⃗𝑣 and horizontal B⃗ℎ magnetic field

components. The setup (Fig. 2.16.iii) contains an inductor I and

a ballistic galvanometer G. The inductor consists of a coil (1),

current-collecting bushings (2), stanchions (3), and a platform (4).

By using bushings and stanchions, the coil is mounted on the

platform and can be rotated freely. To make measurements easier,

the rotation axis passes through the center of mass of the coil along

its diameter. The coil has 𝑁 turns of wire, the ends of the wire

connected to the terminals (5) which are in their turn connected

to the galvanometer G. Under rotation about the axis during the

time interval Δ𝑡, there is a change in Earth magnetic field flux Φ𝑚
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through each turn of the coil. Thus, there is a change in the net

flux through the coil Ψ𝑚 = 𝑁Φ𝑚 by the amount ΔΨ𝑚 = Ψ𝑓 −Ψ𝑖,

where Ψ𝑖 is the initial value of net flux, and Ψ𝑓 is the final one.

According to Faraday’s law, the change of magnetic flux through

a closed conductive circuit induces an electromotive force (EMF)

ℰ𝑖 in the circuit and the EMF is proportional to the rate of change

of the net flux through the coil:

ℰ𝑖 = −𝑑Ψ𝑚

𝑑𝑡
.

EMF ℰ𝑖 induces the current in the coil:

𝐼𝑖 =
ℰ𝑖
𝑅

= −𝑑Ψ𝑚

𝑅𝑑𝑡
,

where 𝑅 is the circuit resistance. Since,

𝐼 =
𝑑𝑞

𝑑𝑡
,

then:
𝑑𝑞

𝑑𝑡
= −𝑑Ψ𝑚

𝑅𝑑𝑡
.

The amount of charge 𝑑𝑞 flowing through the circuit per in-

finitesimal time interval 𝑑𝑡 is

𝑑𝑞 = 𝐼𝑑𝑡 = −𝑑Ψ𝑚

𝑅
.

Integrating the above expression for 𝑑𝑞 over the time interval

during which the magnetic flux changes from Ψ𝑖 to Ψ𝑓 , we have a

total amount of charge passed through the circuit:

𝑞 = −

Ψ𝑚𝑓∫︁
Ψ𝑚𝑖

𝑑Ψ𝑚

𝑅
=

Ψ𝑚𝑖 − Ψ𝑚𝑓

𝑅
=

ΔΨ𝑚

𝑅
. (2.16.2)

In this experiment, a net flux change through the inductor ΔΨ𝑚

is caused by the change in the coil orientation relative to the mag-

netic field lines, i.e. a change of the angle between the normal to
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the coil plane and the magnetic field. Therefore, if the inductor

coil is flipped over (made a 180∘ turn), a new value of the net flux

will be opposite in sign, but its magnitude will not change. Then,

ΔΨ𝑚 = 2Ψ = 2𝐵𝑛𝐴𝑁, (2.16.3)

where 𝐵𝑛 is a projection of the B⃗𝐸 onto the direction of the normal

to the coil plane in initial state; 𝐴 is an area of the coil; 𝑁 is the

number of turns in the inductor coil (Fig. 2.16.iv).

If the initial position of the coil is such that its normal n⃗ is

vertical, 𝐵𝑛 is the vertical projection of the Earth magnetic field

𝐵𝑣. If n⃗ is horizontal, 𝐵𝑛 is the horizontal projection of the Earth

magnetic field 𝐵ℎ.

After substituting (2.16.3) in (2.16.2), we obtain that the amount

of charge flowing through the coil at its rotation through 180∘ de-

pends on the magnetic field component which is perpendicular to

the plane of the coil initial position. Therefore, by measuring the

charge, the magnitude of this component can be determined:

𝐵ℎ,𝑣 =
ΔΨ𝑚

2𝐴𝑁
=

𝑞𝑅

2𝐴𝑁
. (2.16.4)
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When the rotation axis is vertical (the plane of the coil initial

position is vertical too), component 𝐵ℎ is calculated. And when

the rotation axis is horizontal (the plane of the coil initial position

is horizontal too), component 𝐵𝑣 is calculated.

The charge 𝑞, flowing through the coil due to electromagnetic

induction phenomenon, is determined by using a ballistic gal-

vanometer. Ballistic galvanometer differs from other moving-coil

galvanometers in the way that the moment of inertia of its moving

coil is increased, therefore, it has a larger period of oscillation. If

the time of charge flowing through the galvanometer coil is much

less than the period of the coil oscillation, then the magnitude of

the galvanometer spot light first throw 𝑛 is proportional to the

charge that passed through the galvanometer:

𝑞 = 𝐶𝑛, (2.16.5)

where 𝐶 is galvanometer constant. Substituting Eq. (2.16.5) into

(2.16.4), we obtain

𝐵ℎ =
𝐶𝑅

2𝑁𝐴
𝑛ℎ = 𝛽𝑛ℎ, (2.16.6)

where 𝛽 is a constant of the given setup (specified at the equip-

ment). It is clear that a similar relationship is valid for 𝐵𝑣:

𝐵𝑣 = 𝛽𝑛𝑣. (2.16.7)

Step-by-step Procedure of the Experiment

1. Connect the ballistic galvanometer to the terminals of the in-

ductor and plug in the galvanometer.
2. Measure the magnitude of the Earth magnetic field vertical

component 𝐵𝑣. For this:
(a) place the inductor so that the coil rotation axis has hori-

zontal direction along the geographic meridian (the merid-

ian direction is indicated at the workplace), and the coil

plane is horizontal;
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Table 2.16.i

Measurement of𝐵𝑣 Measurement of𝐵ℎ

# 𝑛𝑣𝑒𝑟𝑡, ⟨𝑛𝑣𝑒𝑟𝑡⟩, 𝐵𝑣, 𝑛ℎ𝑜𝑟, ⟨𝑛ℎ𝑜𝑟⟩, 𝐵ℎ, 𝜙, deg. 𝐵𝐸, 𝜇T

g.p. g.p. 𝜇T g.p. g.p. 𝜇T

1

2

. . .

10

(b) make a quick 180∘ turn of the coil and read the absolute

value of the galvanometer spot light first throw 𝑛1;

(c) quickly return the coil to its initial position and read the

absolute value of the galvanometer spot light throw 𝑛2;

(d) repeat the measurements (b), (c) five times each and calcu-

late the average ⟨𝑛𝑣𝑒𝑟𝑡⟩ (over 10 measurements 𝑛𝑖). Write

all the data into Table 2.16.i.

3. Measure the magnitude of the Earth magnetic field horizontal

component 𝐵ℎ. For this, place the coil so that its rotation axis

is vertical and the coil plane is perpendicular to the geographic

meridian plane. Make the same measurements as in Steps 2

(b, c, d), and calculate the average ⟨𝑛ℎ𝑜𝑟⟩.
4. Calculate the values 𝐵𝑣 and 𝐵ℎ using the Eqs. (2.16.6) and

(2.16.7).
5. Calculate the angle of magnetic inclination 𝜙 by using (2.16.1).
6. Calculate the magnitude of the Earth magnetic field 𝐵𝐸 using

its known components 𝐵𝑣 and 𝐵ℎ.

After-lab Questions

Case 1.
1. Formulate Faraday’s law of electromagnetic induction. For-

mulate Lenz’s law.
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2. Explain of the method of magnetic inclination angle determi-

nation by using inductor.
3. What physical quantity can be measured by using a galvanome-

ter? Why is it a ballistic galvanometer that is used in this

experiment?
4. Problem. Circular loop of radius 𝑟 = 2 cm and resistance of

𝑅 = 3.14 Ω is located in a uniform magnetic field of

𝐵 = 0.25 T. Loop plane is perpendicular to the magnetic

field. What charge will flow through the loop if one makes it

a 90∘ turn?
Answer: 𝑞 = 100 𝜇C.

Case 2.
1. Draw the Earth magnetic field. In your drawing indicate the

location of the Earth geographical and magnetic poles, and

the angle of magnetic inclination.
2. Explain the nature of an induced EMF when there is a chang-

ing magnetic flux through a stationary conductor.
3. Describe the self-induction phenomenon. Write the formula

for self-induced EMF.
4. Problem. A coil has the inductance 𝐿 = 0.02 H and carries

a time-varying current: 𝐼(𝑡) = 𝐼0 sin𝜔𝑡 where 𝐼0 = 5 A,

𝜔 = 300 rad/s. Find the time dependence of the self-induced

EMF.
Answer: ℰ = −30 cos 300𝑡.

Case 3.
1. Describe the phenomenon of electromagnetic induction. How

is it used in this experiment?
2. Derive an expression for calculating the charge that passed

through the conducting loop under its rotation in magnetic

field.
3. What peculiarities do magnetic field lines have? Draw a field

produced by a circular loop, a long solenoid; show their direc-

tion. In what case is there a uniform magnetic field?
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4. Problem. Copper hoop of mass𝑚 = 5 kg is located in the plane

of magnetic meridian. What charge will flow through the hoop

when it is rotated about its vertical axis by the angle of 90∘?

The value of the Earth magnetic field horizontal component is

𝐵ℎ = 20 𝜇T. The mass density of copper is 𝜌 = 8900 kg/m3,

and its the electrical conductivity 𝜎 = 5.8 · 107 Ω−1· m−1.
Answer: 𝑞 = 52 mC.

LABORATORY EXPERIMENT 2.18

ANALYSIS OF SELF-INDUCTION PHENOMENON

Purpose of the Experiment: to investigate processes of the

current growth and decay in a circuit containing inductor and to

determine the time constant.

Equipment and Accessories: oscilloscope with a rectangular

pulse generator; 𝑅𝐿–circuit.

Basic Methodology. 𝑅𝐿–circuit is powered by a square-wave

generator. Time constant is determined based on the pattern of

current growth and decay observed at the oscilloscope screen.

Recommended Pre-lab Reading: [1] 30.4; [2] 32.4; [3] 32.2.

Pre-lab Questions

1. What is the SI unit for inductance?

2. Make a definition of the circuit inductance.

3. What is the time constant of 𝑅𝐿–circuit.

Theoretical Introduction

If a circuit contains an inductor such as coil, the self-inductance

of the coil prevents the current in the circuit from increasing or

decreasing instantaneously.
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The circuit diagram for examining the current growth and decay

in 𝑅𝐿–circuits is shown in Fig. 2.18.i. It consists of a battery of

constant electro-motive force ℰ , an ideal coil of inductance 𝐿, and
a resistance 𝑅 in series. The internal resistance of the battery and

all connecting wires is neglected. By using a switch Sw, the coil

can be connected to the battery (position 1, the current growth)

or disconnected from it (position 2, the current decay).

The expressions are derived below for time dependence of a cur-

rent in a 𝑅𝐿–circuit for current growth and decay. Let’s consider

current growth through the inductor. Suppose that the battery

has been initially disconnected from the circuit (switch Sw in a

position 2). The circuit has no current in it. When the circuit

with the battery and the coil is closed (Sw is in position 1), there

is a time-varying current in the circuit. According to Faraday’s

law, the EMF of self-induction is induced in the inductor:

ℰ𝑠𝑖 = −𝐿
𝑑𝐼

𝑑𝑡
. (2.18.1)

According to Ohm’s law for a closed loop, the potential differ-

ence across the resistor 𝑅 is equal to the total EMF on the circuit:

𝐼𝑅 = ℰ + ℰ𝑠𝑖, (2.18.2)

Taking into account Eq. (2.18.1), Eq. (2.18.2) can be rearranged

as follows:
𝑑𝐼

𝑑𝑡
= −𝑅

𝐿

(︂
𝐼 − ℰ

𝑅

)︂
. (2.18.3)
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This differential equation can be solved by the variable separa-

tion method. Taking into account that the initial current is zero,

one can easily derive the behavior of the current as a function of

time:

𝐼(𝑡) =
ℰ
𝑅

(︂
1− 𝑒−

𝑅
𝐿𝑡

)︂
, (2.18.4)

here 𝑒 ≈ 2.71828 is a basis of natural logarithm.
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Graph of 𝐼 versus 𝑡 for the current growth in the 𝑅𝐿–circuit

with EMF in series is shown in Fig. 2.18.ii (curve 1). The value

of the instantaneous current 𝐼 rises rapidly at beginning. Then it

increases slower and approaches the final value 𝐼0 = ℰ/𝑅 asymp-

totically. At a time equal to 𝐿/𝑅, the current has risen to (1−1/𝑒),

or about 63%, of its final value. The quantity 𝐿/𝑅 is therefore a

measure of how quickly the current builds toward its final value.

This quantity is called the time constant for the circuit, or relax-

ation time, denoted by 𝜏 :

𝜏 =
𝐿

𝑅
. (2.18.5)
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In a time equal to 2𝜏 , the current reaches 86 % of its final value;

in 3𝜏 , 95 %; and in 5𝜏 , 99.3 %. Thus, the current in an inductor

never changes instantaneously, but after the current settles down

to a constant value, the inductor plays no role in the circuit.

Now suppose that the switch Sw of the circuit in Fig. 2.18.i

has been in a position 1 for a while, and the current has reached

the value 𝐼0. Resetting stopwatch to redefine the initial time, the

switch Sw is thrown to the position 2 at time 𝑡 = 0, bypassing the

battery. The current through 𝑅 and 𝐿 does not instantaneously go

to zero but decays smoothly. Again, the EMF of self-induction ℰ𝑠𝑖
(eq. (2.18.1)) is induced in the inductor. At the moment when the

switch is repositioned, the battery with permanent EMF ℰ is dis-

connected from 𝑅𝐿–circuit. Hence, in this situation, Eq. (2.18.2)

is equivalent to

𝐼𝑅 = ℰ𝑠𝑖 = −𝐿
𝑑𝐼

𝑑𝑡
. (2.18.6)

The solution of this equation can be found by the same vari-

able separation method. Taking into account the initial condition

𝐼(𝑡)
⃒⃒
𝑡=0

= 𝐼0, one can easily show that the current passing through

the inductor varies with time according to

𝐼(𝑡) = 𝐼0𝑒
−𝑅
𝐿𝑡. (2.18.7)

Graph of 𝐼 versus 𝑡 for the current decay in 𝑅𝐿–circuit is shown

in Fig. 2.18.ii (curve 2). The time constant, 𝜏 = 𝐿/𝑅, is the time

for current to decrease to 1/𝑒, or about 37 %, of its original value.

In time 2𝜏 , it has dropped to 13.5 %, in time 3𝜏 to 5 %, and in 5𝜏

to 0.67 %. The time constant is a useful parameter for comparing

the time responses of various circuits.

The scheme of the laboratory facility used in this experiment is

shown in Fig. 2.18.iii. Connection to and disconnection from the

battery is imitated by rectangular pulsing from the generator to
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the 𝑅𝐿–circuit (Fig. 2.18.iv,a). Square-wave generator of rectan-

gular pulses is built into the oscilloscope. There is a current going

through the inductor 𝐿 and the resistor 𝑅. The potential dif-

ference across the resistor 𝑉𝑅 is applied to the oscilloscope input.

According to Ohm’s law (𝑉𝑅 = 𝐼(𝑡)𝑅), this voltage is proportional

to current (Fig. 2.18.iv,b). The time constant of 𝑅𝐿–circuit can

be evaluated based at the time dependence of 𝐼(𝑡) observed on the

oscilloscope screen.

For quantitative evaluation of time dependence of a current we

can use the oscilloscope mode of operation when a continuous

curve is shown as a dashed line (the mode “Marks”, “Метки” in

Russian). This technique with applying marks was described be-
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fore (Laboratory experiment 2.4). The time constant of𝑅𝐿-circuit

is extracted from time dependence of a current by the logarithmic

method. To apply this method, one has to plot graphs of the depen-

dence of ln
𝐼0

𝐼0 − 𝐼(𝑡)
(for current growth) and ln

𝐼0

𝐼(𝑡)
(for current

decay) on time 𝑡 (Fig. 2.18.v). The value of 𝜏 is determined by

using an appropriate graph.

From Eqs. (2.18.4), (2.18.5), and (2.18.7), one can derive the fol-

lowing expressions for experimental evaluating the time constant:

𝜏 =
Δ𝑡

Δ ln
𝐼0

𝐼0 − 𝐼(𝑡)

(for current growth); (2.18.8)

𝜏 =
Δ𝑡

Δ ln
𝐼0

𝐼(𝑡)

(for current decay). (2.18.9)

Δ𝑡 is an arbitrarily chosen time interval, and the change of func-

tions (Δ

(︂
ln

𝐼0
𝐼0 − 𝐼(𝑡)

)︂
— for current growth or Δ

(︂
ln

𝐼0
𝐼(𝑡)

)︂
—

for current decay) takes place within this time interval.
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In the case, the dependences ln
𝐼0

𝐼0−𝐼(𝑡) for current growth and

ln
𝐼0
𝐼(𝑡) for current decay are not linear; they have to be extrapolated

by linear dependence (see Fig. 2.18.v). The experimental values

of time constant 𝜏𝑒𝑥𝑝 is defined by Eqs. (2.18.8) and (2.18.9) for

current growth and decay respectively.

Step-by-step Procedure of the Experiment

Task 1. Current growth in the 𝑅𝐿–circuit.
1. Check the connection of generator and oscilloscope to the

𝑅𝐿–circuit and switch them on.
2. Switch on the oscilloscope (it should warm up for 2 – 3 min-

utes). Get a stable picture at the oscilloscope screen like in

Fig. 2.18.iv,b. Set the time interval Δ𝑡𝑚 between the adjacent

marks according to the instructor’s recommendation.
3. Determine time coordinates of the mark on the curve of the

current growth by the formula 𝑡𝑘 = 𝑘Δ𝑡𝑚. Determine the

values of the ordinates 𝐼𝑘 of the marks beginnings on the

growing curve 𝐼(𝑡) and the maximum value of current 𝐼0 (see

Fig. 2.18.iv,b). Write the data into Table 2.18.i.

Table 2.18.i

Label #, 𝑘 𝑡 = 𝑘Δ𝑡𝑚,𝜇s 𝐼𝑘, g.p.
𝐼0

𝐼0 − 𝐼𝑘
ln

𝐼0

𝐼0 − 𝐼𝑘
𝜏exp,𝜇s

0 0 0 1 0

1

2

3

4

5

4. Calculate the ratio
𝐼0

𝐼0−𝐼𝑘
and its logarithm for all values of

the found current.
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5. Construct the dependence graph of ln
𝐼0

𝐼0−𝐼(𝑡) . Using it and

Eq. (2.18.8), evaluate the time constant of this 𝑅𝐿–circuit for

current growth.

Task 2. Current decay in the 𝑅𝐿–circuit.

1. Determine time coordinates of the marks on the curve of the

current decay by the formula 𝑡𝑘 = 𝑘Δ𝑡𝑚.

2. Determine the values of the ordinates 𝐼𝑘 of the mark begin-

nings on the decaying curve 𝐼(𝑡). Write the data into Ta-

ble 2.18.ii.

3. Calculate the ratio
𝐼0
𝐼𝑘

and its logarithm for all values of the

found current.

4. Construct the dependence graph ln
𝐼0
𝐼(𝑡). Using it and

Eq. (2.18.9), evaluate the time constant of this 𝑅𝐿–circuit

for current decay.

Table 2.18.ii

Label #, 𝑘 𝑡 = 𝑘Δ𝑡𝑚, 𝜇s 𝐼𝑘, g.p.
𝐼0
𝐼𝑘

ln
𝐼0

𝐼𝑘
𝜏exp, 𝜇s

0 0 1 0

1

2

3

4

5

After-lab Questions

Case 1.

1. Write Ohm’s law for close circuit that contains an inductor

and a resistor connected in serial to DC battery. Explain it.
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2. Derive the inductance of a toroid with cross-sectional area 𝐴,

mean radius 𝑟 and 𝑁 closely wound turns of wire.
3. Does the time constant 𝜏 of the 𝑅𝐿–circuit change due to the

introduction of the ferromagnetic core inside the inductor? If

it does, try to explain why this happens and how (becomes

longer or shorter).
4. Problem. There is a current 𝐼 = 𝐼0 sin𝜔𝑡 going through the

coil of inductance 𝐿 = 0.021 H. Here, 𝐼0 = 5 A, 𝑓 = 50 Hz.

Find time dependence of the EMF induced in the circuit.
Answer: ℰ = 33 sin (100𝜋𝑡− 𝜋/2) V.

Case 2.
1. Formulate Faraday’s law. Provide examples.
2. Derive the time dependence of a current in the 𝑅𝐿–circuit

under current growth conditions.
3. Prove that the time constant 𝜏 of 𝑅𝐿–circuit has the dimen-

sion of time.
4. Problem. A coil of inductance 𝐿 = 3 mH and resistance

𝑅 = 150 Ω is connected to the DC power source. How much

time does it take the current in coil to achieve half of maxi-

mum value?
Answer: Δ𝑡 = 13.86 𝜇s.

Case 3.
1. Write an expression for a magnetic field energy and magnetic

field energy density.
2. Derive the time dependence of a current in the 𝑅𝐿–circuit

under current decay conditions.
3. What parameters of the circuit influence the rate of the cur-

rent growth/decay?
4. Problem. All of the coil geometry were halved. The numbers of

coil wraps and current remain the same. How does inductance

change? How does magnetic field energy change?
Answer: Both halved.
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Chapter 3

WAVE AND QUANTUM OPTICS

LABORATORY EXPERIMENT 3.1

DETERMINATION OF THE REFRACTIVE INDEX OF GLASS

USING THE INTERFERENCE METHOD

Purpose of the Experiment: to determine the refractive in-

dex of glass using the phenomenon of light interference in a glass

plane-parallel plate.

Equipment and Accessories: optics bench, ruby laser LG72

with power supply IP-13, opaque screen with a short-focus lens,

glass plane-parallel plate.

Basic Methodology. Light from a ruby laser source is re-

flected by two opposite surfaces of the glass plane-parallel plate

and rings as interference fringes are observed on the screen. The

diameters of two not adjacent rings are measured.

Recommended Pre-lab Reading: [1] 35.1, 35.4; [2] 35.1,

35.3, 37.3; [3] 35.4, 35.5, 37.4, 37.5.

Pre-lab Questions

1. What is the meaning of the index of refraction?

2. What happens when two waves combine, or interfere, in space?

3. What conditions must be met for constructive and destructive

interference to occur?
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Theoretical Introduction

When a parallel monochromatic beam of light 1 (Fig. 3.1.i) of

the wavelength 𝜆 falls on the plane-parallel plate of thickness ℎ,

the plate reflects two parallel beams of light. The beam 2 is re-

flected by the upper surface of the plate, and the beam 2′ is re-

flected by the lower one. Beams 2 and 2′ are coherent as they come

from the same source of light and they have an optical path differ-

ence. To calculate it let’s drop a perpendicular from the point C

onto the beam 2. The optical path difference between the beams

2 and 2′ is

Δ = (𝐴𝐵 +𝐵𝐶)𝑛−
(︂
𝐴𝐷 − 𝜆

2

)︂
,

where 𝑛 is the refractive index of the plate (for air 𝑛 = 1). Here, an

extra phase difference 𝜋 occurs for the ray reflected from the upper

surface of the plate because in this reflection, the incident beam

goes from the rarer medium to the denser one. Therefore, the

optical path of the beam 2 has decreased by 𝜆/2. From Fig. 3.1.i,

we can see that 𝐴𝐵 = 𝐵𝐶 = ℎ/ cos 𝛽. According to the law of

the light refraction

sin𝛼 = 𝑛 sin 𝛽 (3.1.1)

we have

𝐴𝐷 = 2ℎ tan 𝛽 sin𝛼 = 2ℎ𝑛
sin2 𝛽

cos 𝛽
.

Then,

Δ =
2ℎ𝑛

cos 𝛽
−2ℎ𝑛 sin2 𝛽

cos 𝛽
+
𝜆

2
=

2ℎ𝑛

cos 𝛽
(1−sin2 𝛽)+

𝜆

2
= 2ℎ𝑛 cos 𝛽+

𝜆

2
.

(3.1.2)

Using (3.1.1) we can rewrite Eq. (3.1.2) as a dependence on the

angle of incidence 𝛼:

Δ = 2ℎ
√︀

𝑛2 − sin2 𝛼 +
𝜆

2
. (3.1.3)
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When Δ is an integer number of wavelengths, we expect to see

constructive interference and a bright area and, when it is half-

integer, destructive interference and a dark area. Therefore, the

expression for maxima of the light reflected from the flat parallel

plate is

2ℎ
√︀

𝑛2 − sin2 𝛼 +
𝜆

2
= 2𝑚

𝜆

2
,

or

2ℎ
√︀

𝑛2 − sin2 𝛼 = (2𝑚− 1)
𝜆

2
,

or, in terms of the angle of refraction 𝛽,

2ℎ𝑛 cos 𝛽 = (2𝑚− 1)
𝜆

2
, (3.1.4)

where 𝑚 is an integer (𝑚 = ±1, ±2, . . . ).

And the expression for the minima of the reflecting light is

2ℎ
√︀

𝑛2 − sin2 𝛼 +
𝜆

2
= (2𝑚 + 1)

𝜆

2
,

or

2ℎ
√︀

𝑛2 − sin2 𝛼 = 2𝑚
𝜆

2
,

or

2ℎ𝑛 cos 𝛽 = 2𝑚
𝜆

2
, (3.1.5)
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where 𝑚 is an integer (𝑚 = ±1, ±2, . . . ).

If the surfaces of the plate are perfectly parallel, the plate is

bright or dark depending on the angle of incidence of the monochro-

matic light.

If a divergent beam (spherical wave) falls on the plate, its var-

ious rays have different angles of incidence. A pair of two rays

reflected from the upper and lower surfaces corresponds to every

incident ray. Optical path difference for every pair is expressed by

Eq. (3.1.3), and it isn’t the same for all points of the surface in

respect to different angles of incidence.

Description of the Equipment

The scheme of laboratory facility is represented in Fig. 3.1.ii,

where 1 is a laser; 2 is a short-focus lens; 3 is a screen; 4 is a

plane-parallel plate.

To observe the interference in reflecting light the converging lens

2 (see Fig. 3.1.ii) and the screen 3, located in the lens focal plane,

are used. After lightening the flat parallel plate by monochromatic

light, the interference of reflecting light (reinforcement or cancel-
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lation) at different points on the screen depends only on the angle

of light incidence on the plate. Thus, the interference pattern on

the screen is a succession of bright and dark bands, or interference

fringes. Every fringe corresponds to the definite angle of incidence.

Therefore, such a pattern is called fringes of equal inclination. If

the optical axis of the lens is perpendicular to the plate surface,

the fringes of equal inclination have the form of concentric rings

with the center in the main focus of the lens.

This phenomenon is used to determine the refractive index of

glass.

Interferential condition for the 𝑚-th minimum of reflected light

according to Eq. (3.1.5) is

2ℎ𝑛 cos 𝛽𝑚 = 𝑚𝜆.

For another minimum, 𝑘 bands apart from the 𝑚-th, we have:

2ℎ𝑛 cos 𝛽𝑚+𝑘 = (𝑚 + 𝑘)𝜆. (3.1.6)

After calculating the difference between Eqs (3.1.6) and (3.1.5),

we get:

𝑘𝜆 = 2ℎ𝑛(cos 𝛽𝑚+𝑘 − cos 𝛽𝑚). (3.1.7)

For small angles 𝛽𝑚+𝑘 and 𝛽𝑚, the functions cos 𝛽𝑘+𝑚 and cos 𝛽𝑘
are expanded into a series and limited by the first approximation

cos 𝛽 ≈ 1− 1
2𝛽

2:

|cos 𝛽𝑚+𝑘 − cos 𝛽𝑚| =
𝛽2
𝑚+𝑘 − 𝛽2

𝑚

2
. (3.1.8)

According to the Snell’s law and considering angles 𝛼𝑚 and 𝛽𝑚
small, we get:

𝑛 =
sin𝛼𝑚

sin 𝛽𝑚
=

𝛼𝑚

𝛽𝑚
. (3.1.9)

As can be readily seen from the right triangle △𝑂𝐵𝐶 in

Fig. 3.1.ii, small angle 𝛼𝑚 is:

𝛼𝑚 =
𝑅𝑚

2𝐿
, (3.1.10)
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where 𝑅𝑚 is the radius of the 𝑚-th dark ring; 𝐿 is the distance

between the glass plate and the screen.

Similar expression can be written for a (𝑚 + 𝑘)-th dark ring:

𝛼𝑚+𝑘 =
𝑅𝑚+𝑘

2𝐿
. (3.1.11)

Substituting Eqs (3.1.8) – (3.1.11) into the Eq. (3.1.7), we get:

𝑛 =
ℎ(𝑅2

𝑚+𝑘 −𝑅2
𝑚)

4𝑘𝐿2𝜆
. (3.1.12)

Thus, measuring the radii of two dark rings, thickness of the

plate, and distance between the plate and the screen according to

Eq. (3.1.12), we can calculate the index of refraction of the glass.

The great spatial and time coherence of laser emission allows us

to use the laser light beam with the power of some milliwatts to

observe interference fringes in the sufficiently thick plane-parallel

plate.

Step-by-step Procedure of the Experiment

1. Turn on the power supply and the laser.
2. Place the screen with the lens near the laser so that the beam

is aimed at the hole in the screen.
3. Adjust the position of the glass plate so that you clearly

observe interference pattern (dark and bright rings) on the

screen.
4. Measure radii of two dark rings 𝑅𝑚 and 𝑅𝑚+𝑘 (it is advisable

𝑘 is high).
5. Using the scale on the optics bench, measure the distance 𝐿

between the screen and the front surface of the glass plate.
6. Calculate the refractive index of glass according to Eq. (3.1.12)

if the laser wavelength 𝜆 = 6328 Å (1 Å= 10−10 m), and the

thickness of glass plate ℎ = 17 mm.
7. Move the glass plate along the optics bench and repeat steps

3–6 again.
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8. Find the average value of the refractive index of glass.

After-lab Questions

Case 1.
1. What is interference?
2. Derive the expression for the optical path difference Δ of rays

reflected by the plane-parallel plate.
3. What are the fringes of equal inclination?
4. Problem.White light falls on the soap film at the angle 𝛼 = 45∘.

What its minimal thickness should be for a yellow-coloured

(𝜆 = 600 nm) film to be observed in reflected rays? Refrac-

tive index of soapsuds is 𝑛 = 1.33.
Answer: ℎ = 0.13 𝜇m.

Case 2.
1. What is an the optical path difference of beams?
2. Derive the expression for calculating of the refractive index of

glass using in this experiment.
3. Give the examples of the interference practical application in

engineering.
4. Problem.A plane-parallel glass plate of the thickness ℎ = 1mm

stands on the way of a monochromatic light with the wave-

length 𝜆 = 0.6 𝜇m. Light falls on the plate normally. What

angle 𝜙 is it necessary to turn the plate so that the optical

distance changes by 𝜆/2? Refractive index of glass is 𝑛 = 1.5.
Answer: 𝜙 = 1.72∘.

Case 3.
1. What waves are called coherent?
2. What is an optical path?
3. Derive the conditions for constructive and destructive inter-

ference to occur.
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4. Problem. Light propagates in the air. A glass plate of the

thickness ℎ = 1 mm stands in its way. How much will the

optical path of the beam change by if the light falls on the

plate: (a) normally; (b) at the angle 𝛼 = 30∘.

Answer: (a) increase by 0.5 mm; (b) increase by 0.548 mm.

LABORATORY EXPERIMENT 3.7

DETERMINATION OF A LIGHT WAVELENGTH WITH

DIFFRACTION GRATING

Purpose of the Experiment: to determine wavelengths of two

colours of visible light.

Equipment and Accessories: optics bench; lantern with two

slits; diffraction grating; light filters.

Basic Methodology. Light from two slits falls normally on a

diffraction grating mounted behind a movable plate with light fil-

ters. As the slits are situated at different heights, so their diffrac-

tion patterns are seen one above another, and the same order

diffraction maxima from the slits can be matched. Wavelengths

are computed by calculating diffraction angles and using the con-

dition for diffraction maxima.

Recommended Pre-lab Reading: [1] 36.1, 36.2, 36.5; [2]

38.1, 38.2, 38.3; [3] 38.1, 38.2, 38.4.

Pre-lab Questions

1. What is a diffraction grating?

2. Draw the pattern diagram of the diffraction grating.

3. What condition must be met for a maximum to occur in the

diffraction pattern for a diffraction grating?
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Theoretical Introduction

The diffraction grating, a useful device for analyzing light

sources, consists of a large number of equally spaced parallel slits.

A transmission grating can be made by cutting parallel grooves on

a glass plate with a precision ruling machine. The spaces between

the grooves are transparent to the light and hence act as separate

slits. A reflection grating can be made by cutting parallel grooves

on the surface of a reflective material. The reflection of light from

the spaces between the grooves is specular, and the reflection from

the grooves cut into the material is diffuse. Thus, the spaces be-

tween the grooves act as parallel sources of reflected light, like the

slits in a transmission grating.

P

a b

L

d b a

Gr

Δx

Gr

m=0

m=1

m=2
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m=-2

φ

φ

Figure 3.7.i

In Fig. 3.7.i, you can see cross sections of a transmission grating.

The slits are perpendicular to the plane of the page, and an inter-

ference pattern is formed by the light that is transmitted through

the slits. All slits have the same width 𝑏 (see Fig. 3.7.i.a) and

equal distances 𝑎 between adjacent ones. The spacing 𝑑 between

centers of the adjacent slits, or 𝑑 = 𝑎 + 𝑏, is called the grating

spacing.
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In Fig. 3.7.i,b, a plane wave is incident from the left, normal to

the plane of the grating. The pattern observed on the screen (we

need to use a convex lens to gather parallel rays at one point) is

the result of the combined effects of interference and diffraction.

Each slit produces diffraction, and the diffracted beams interfere

with one another to produce the final pattern.

The waves from all slits are in phase as they leave the slits.

However, for some arbitrary direction 𝜙measured from the normal

to the grating plane, the waves must travel different path lengths

before reaching the screen. From Fig. 3.7.i.a, note that the path

difference Δ between rays from any two adjacent slits is equal

to 𝑑 sin𝜙. If this path difference equals one wavelength or some

integer multiple of a wavelength, then waves from all slits are in

phase at the screen and a bright fringe is observed. Therefore, the

condition for maxima in the interference pattern at the angle 𝜙 is

𝑑 sin𝜙 = 𝑚𝜆 𝑚 = 0,±1,±2 . . . (3.7.1)

Such maxima are called principal. Between two principal max-

ima, there are (𝑁 − 1) minima (𝑁 is a number of slits). Between

two such consecutive minima, the intensity has to have a maxi-

mum; these maxima are known as secondary maxima. These are

of much smaller intensity than principal maxima, therefore, sec-

ondary maxima are perceived as a weak background.

We can use Eq. (3.7.1) to calculate the wavelength if we know

the grating spacing 𝑑 and the angle 𝜙. If the incident radiation

contains several wavelengths, the 𝑚th-order maximum for each

wavelength occurs at a specific angle.

In Fig. 3.7.ii,a, there is a scheme for observing interference pat-

tern in this experiment.

Light beams from the slits 𝑆1 and 𝑆2, passing through the

diffraction grating, produce two diffraction spectra displaced rel-

ative to each other (Fig. 3.7.ii,b).
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Moving the diffraction grating along the optics bench, one can

receive the overlapping of the slit 𝑆1 left diffraction image with

the slit 𝑆2 right diffraction image. If you overlap the first–order

maximum (𝑚 = 1) from one slit with the maximum of 𝑚 = −1

order from another (Fig. 3.7.ii,b), the position of slits overlapped

images in your eye is exactly on the optics bench axes. Virtual

images of overlapped maxima you see midway between the slits.

As you can see in Fig. 3.7.ii,a, 𝑂𝑆1𝐴 is a right triangle, so

tan𝜙 =
𝑂𝑆1

𝐴𝑂
=

𝑆1𝑆2

2𝐴𝑂
. (3.7.2)

From tan𝜙, you can find out the magnitude of sin𝜙:

sin𝜙 =
tan𝜙√︀
1 + tan2 𝜙

.

The above is correct for overlapping the second- and third-order

maxima (𝑚 = ±2,±3). So, the expression for a wavelength cal-
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culation is

𝜆 =
𝑑 sin𝜙

𝑚
. (3.7.3)

Description of the Equipment

The laboratory facility for this experiment consists of an optics

bench, a lantern with two slits, a diffraction grating, and light

filters arranged on the bench. Slits are equidistant to the left and

to the right from the optics bench. For ease of observations, they

are at different height, and the bottom of the upper slit is at the

same level as the top of the lower one. The holder of light filters

and diffraction grating can be moved along the optic bench.

Step-by-step Procedure of the Experiment

1. Turn on the lantern and place the first light filter in front of

the diffraction grating.

2. Looking through and above the diffraction grating, find two

slit images corresponding to the straight rays, i.e. the 0-th

order spectra. These images are the brightest ones.

3. Moving the holder of diffraction grating, find the position

where slit virtual images of the first order (𝑚 = ±1) are situ-

ated one above another.

4. Measure the distance from the lantern to the holder. It is

the distance 𝐴𝑂 on the scheme in Fig. 3.7.ii,a. (The distance

𝑆1𝑆2, between the centers of the slits and the grating spacing 𝑑

are given.) From Eq. (3.7.2), calculate tan𝜙 and find out sin𝜙.

Determine the wavelength 𝜆1 for 𝑚 = 1 from Eq. (3.7.3).

5. Repeat the steps 3 and 4 for the second-order spectra (𝑚 = ±2)

and calculate the wavelength 𝜆2 for it. If it’s possible, repeat

the same for the third-order spectra (𝑚 = ±3) and calculate

𝜆3.

6. Calculate the average value of the wavelength 𝜆𝑎𝑣.

7. Repeat the steps 3 trough 6 for another light filter.
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8. Remove the light filter. Sketch the result of visible light

diffraction (0-th, 1-st and 2-nd order maxima) to scale and

mark the colors.
Warning. Don’t touch the surface of the diffraction grating.

After-lab Questions

Case 1.
1. What is diffraction? What types of diffraction do you know?
2. Derive the condition for diffraction minima at diffraction from

one slit.
3. Draw a sketch of the diffraction pattern when visible light

passes through a diffraction grating and explain it.
4. Problem. Monochromatic light (𝜆 = 600 nm) is at normal in-

cidence on a diffraction grating that has 200 slits/mm. What

greatest order of maximum can be observed from this diffrac-

tion grating?
Answer: 𝑚= 8.

Case 2.
1. Formulate the Huygens-Fresnel principle.
2. Derive the condition for principal maxima at diffraction from

diffraction grating.
3. Draw a sketch of the facility optic scheme for diffraction spec-

tra observation. What performs a function of a convex lens?
4. Problem. If a diffraction grating produces its fifth-order bright

band at an angle of 18∘ for light of wavelength 600 nm, find

the number of slits per millimeter for the grating.
Answer: 103 slits/mm.

Case 3.
1. Describe the method of Fresnel zones.
2. Can a diffraction grating for visible light be used for X–rays

diffraction? Why?
3. Explain the presence of secondary maxima in the pattern from

a diffraction grating.
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4. Problem. What greatest order of spectrum can be observed

with the diffraction grating you have used in your experiment

(𝑑 = 0.01 mm) for the wavelength 𝜆 = 600 nm?
Answer: 𝑚=16.

LABORATORY EXPERIMENT 3.8

INVESTIGATION OF LIGHT POLARIZATION

Purpose of the Experiment: to study the polarization of light,

to verify Malus law, to find the Brewster angle for glass and its

index of refraction.

Equipment and Accessories: optics bench; light source con-

nected to the rectifier; rectifier networked with voltage 220 V (al-

lows users to adjust light source voltage and change its brightness);

two polaroids (each enclosed in the mount with a dial for measur-

ing of a polaroid rotation angle around the horizontal axis); black

mirror in the mount that allows users to rotate it around the ver-

tical axis; photocell on the tripod attached to the microammeter.

Basic Methodology. Magnitude of a photocell current de-

pends on the intensity of light falling on it. Therefore, measuring

current with microammeter, we find out intensity change of natu-

ral light which has passed through two polaroids.

Recommended Pre-lab Reading: [1] 33.5; [2] 34.5; [3] 38.6.

Pre-lab Questions

1. Draw a schematic diagram of an electromagnetic wave propa-

gating at velocity 𝑐 in the positive 𝑥 direction.
2. What can you say about the direction in which the electric

field is vibrating in a beam of light emitted by the ordinary

light source?
3. What light is said to be plane-polarized?

121



Theoretical Introduction

There is a number of ways an unpolarized light can be converted

into a plane-polarized light.

Polarization by Selective Absorption

The most common technique for producing polarized light is to

use a material that transmits waves which electric fields vibrate

in a plane parallel to a certain direction and that absorbs waves

which electric fields vibrate in all other directions.

In 1938, E. H. Land (1909–1991) discovered a material, which

he called polaroid, that polarizes light through selective absorption

by oriented molecules. This material is fabricated in thin sheets

of long-chain hydrocarbons. The sheets are stretched during man-

ufacture so that the long-chain molecules align. After a sheet is

dipped into a solution containing iodine, the molecules become

good electrical conductors. However, conduction takes place pri-

marily along the hydrocarbon chains because electrons can move

easily only along the chains. As a result, the molecules readily

absorb light which electric field vector is parallel to their length

and allow light through which electric field vector is perpendicular

to their length.

It is common to refer to the direction perpendicular to the

molecular chains as the polarizing, or transmission, axis. In an

ideal polarizer, all light with E⃗ parallel to the polarizing axis is

transmitted, and all light with E⃗ perpendicular to the polarizing

axis is absorbed.

Let us consider an unpolarized light beam incident on a first po-

larizing sheet, called the polarizer. If the polarizing axis is oriented

vertically the light transmitted through this sheet is polarized ver-

tically. A second polarizing sheet, called the analyzer, intercepts

the beam. The analyzer polarizing axis is set at an angle 𝛼 to

the polarizer axis. We call the electric field vector of the first
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transmitted beam 𝐸0. The component of 𝐸0 perpendicular to the

analyzer axis is completely absorbed. The component of 𝐸0 paral-

lel to the analyzer axis, which is allowed through by the analyzer,

is 𝐸0 cos𝛼 (See Fig. 3.8.i). Because the intensity of the trans-

mitted beam varies as the square of its magnitude, we conclude

that the intensity of the (polarized) beam transmitted through the

analyzer varies as

𝐼 = 𝐼0 cos
2 𝛼, (3.8.1)

where 𝐼0 is the intensity of the polarized beam incident on the

analyzer. This expression, known as Malus’s law, applies only if

the incident light passing through the analyzer is already linearly

polarized.

We should take into consideration that polaroids are not ideal

polarizers. They do not provide complete polarization of light and

are unequally transparent for rays of different colours. For this

reason, the intensity of light transmitted through the analyzer

consists of intensities of two beams, polarized and unpolarized

ones. The intensity 𝐼1 of the unpolarized beam does not depend
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on the angle 𝛼 between the polarizing axes of the polarizer and

the analyzer. Thus, for polaroids, the intensity of light transmitted

through the analyzer is determined by the relation:

𝐼 = 𝐼1 + 𝐼0 cos
2 𝛼. (3.8.2)

Polarization by Reflection

When an unpolarized light beam is reflected from a surface, the

reflected light may be completely polarized, partially polarized, or

unpolarized, depending on the angle of incidence. If the angle of

incidence is 0∘, the reflected beam is unpolarized. For other angles

of incidence, the reflected light is polarized to some extent, and for

one particular angle of incidence, the reflected light is completely

polarized. Let us now investigate reflection at that special angle.

Suppose that an unpolarized light beam is incident on a surface

(as an incident beam in Fig. 3.8.ii). Each individual electric field

vector can be resolved into two components: one parallel to the
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surface (and perpendicular to the page in Fig. 3.8.ii, represented by

the dots), and the other (represented by the arrows) perpendicular

both to the first component and to the direction of propagation.

Thus, the polarization of the entire beam can be described by

two electric field components in these directions. It is found that

the parallel component reflects more strongly than the perpendic-

ular component, and this results in a partially polarized reflected

beam. Furthermore, the refracted beam is also partially polarized.

Now suppose that the angle of incidence is varied until the angle

between the reflected and refracted beams is 90∘, as in Fig. 3.8.ii.

At this particular angle of incidence, the reflected beam is com-

pletely polarized (with its electric field vector parallel to the sur-

face), and the refracted beam is still only partially polarized. The

angle of incidence at which this polarization occurs is called the

polarizing angle 𝜃𝑝, which satisfies the equation

𝑛 = tan 𝜃𝑝, (3.8.3)

where 𝑛 is the relative index of refraction. This expression is called

Brewster’s law, and the polarizing angle 𝜃𝑝 is sometimes called

Brewster’s angle, after its discoverer, David Brewster (1781–1868).

Because 𝑛 varies with wavelength for a given substance, Brewster’s

angle is also a function of wavelength.

Description of the Equipment

The picture of laboratory facility is represented in Fig. 3.8.iii

where on the optic bench from left to right, there are a light source

(connected to the power supply), a polarizer, an analyzer, and a

photocell as a light receiver connected to a sensitive microammeter

for photocurrent recording.
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Figure 3.8.iii

Step-by-step Procedure of the Experiment

Task 1. Study of Malus’s law.

1. Arrange devices on the optic bench, as shown in Fig. 3.8.iii.
2. Turn on the power supply of the light source.
3. Turn on the power supply with microammeter connected to

the photocell.
4. Set up the light source, the polaroids, and the photocell so

that the beam passes through both the polarizers and falls on

to the photocell.
5. Adjust the light source voltage (use a handle on the power sup-

ply) and limit of effective range of the microammeter (number

of keys on it) so that a microammeter measuring cursor does

not transcend the scale. The distance between the light source

and the photocell should be not less than 1 m.
6. Cursor on the mount of the analyzer set to zero on the scale

of the analyzer.
7. Rotating the polarizer, assign a maximum value of intensity

of the light transmitted through both the polarizers. It cor-

responds to the maximum value of photocurrent recorded by
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the microammeter.

Remember! For accurate measurements, the maximum value

of photocurrent should be within the last quarter of the mi-

croammeter scale. So, if it’s necessary adjust the intensity of

light source again.
8. Rotate the analyzer over the range 0∘ to 180∘ and every 10∘

measure the photocurrent. Take data down into the table.
9. Construct a graph of the photocurrent 𝐼 versus cos2 𝛼.
10. Calculate the degree of polarization of light passing through

the analyzer. The degree of light polarization is determined

by the expression

𝑃 =
𝐼max − 𝐼min

𝐼max + 𝐼min
,

where 𝐼max and 𝐼min are the maximum and minimum values of

light intensity corresponding to the two orthogonally related

directions of light vibrations in the beam.

Task 2. Determination of the refractive index of glass by its

Brewster’s angle.

1. Remove the analyzer and place a black mirror instead.
2. Set the mirror surface perpendicular to the incident beam. Set

the pointer on the limb on the horizontal mount of the mirror

to a handy mark for readout (e.g., 0 or 180∘).
3. Turn the mirror at some angle (∼ 40 . . . 50∘) and, rotating

the polarizer, visually observe the light source image given

by the rays reflected from the mirror. Fix the polarizer at

the position at which the intensity of the reflected beam is

minimal.
4. Rotating the mirror, receive less intensity of the source image.

Continue to rotate the polarizer and the mirror by turns till

the intensity of the reflected beam becomes minimal. If polar-

ized light falls on the mirror, there is no reflected beam under

two conditions:
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(a) in the incident light, vector E⃗ vibrates in the plane of

incidence;
(b) the angle of incidence equals the Brewster’s angle.

As a polaroid is used as a polarizer in this work, you can

receive only minimal intensity of the reflected beam but not

its absence.

5. Mark the position of the pointer on the limb. Difference be-

tween the final and the initial values of the pointer position is

equal to the Brewster’s angle 𝜃𝑝.

6. Using Eq. (3.8.3) compute the refractive index of glass, which

a black mirror is made of.

After-lab Questions

Case 1.

1. What light is called natural, plane-polarized, partially polar-

ized?

2. Describe the phenomenon of double refraction (or birefrin-

gence). Enumerate properties of ordinary and extraordinary

rays.

3. Prove that the intensity of light passing through any ideal po-

larizer is equal to half of intensity of the incident natural light

(under absence of absorption in the material of the polarizer).

4. Problem. What is the refractive index of glass if the reflected

beam is completely polarized? The angle of refraction is 30∘.
Answer: 𝑛 = 1.73.

Case 2.

1. Light falls on the surface of the dielectric. How are reflected

and refracted beams polarized?

2. Formulate and derive the formula for Malus’s law.

3. Explain the operating principle of polaroid.
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4. Problem. Natural light of intensity 𝐼0 passes through the sys-

tem of two crossed polarizers. What is the intensity of light

transmitted through the system if the third polarizer is placed

between the two, and its polarizing axis is set at an angle 𝛼

to the first polarizer axis?

Answer: 𝐼 =
𝐼0
8
sin2 2𝛼 .

Case 3.
1. Draw a diagram for the situation when light strikes a surface

at the polarizing angle. Using it and the law of refraction,

derive the expression for Brewster’s law.
2. Explain the operating principle of Nicol prism?
3. What is a degree of polarization? For what type of polarized

light can this notion be used?
4. Problem. What is the angle between the polarizing axes of

the polarizer and the analyzer, if the intensity of natural light

passed through them decreases four times? Light absorption

should be neglected.
Answer: 𝛼 = 45∘.

LABORATORY EXPERIMENT 3.12

STEFAN-BOLTZMANN CONSTANT DETERMINATION

Purpose of the Experiment: to learn an operating princi-

ple of an optical pyrometer, to determine the Stefan–Boltzmann

constant.

Equipment and Accessories: disappearing filament pyrom-

eter LOP-72; pyrometer power supply; universal digital voltmeter

B7-22A; ammeter; voltmeter; autotransformer.

Basic Methodology. Using a disappearing filament pyrome-

ter, the temperature of a heated body is determined. Radiated
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power of a heated body is calculated by reading of an ammeter

and a voltmeter. The Stefan–Boltzmann constant is calculated by

the Stefan-Boltzmann law.

Recommended Pre-lab Reading: [1] 17.7, 38.8; [2] 17.5,

40.1; [3] 20.7, 40.1.

Pre-lab Questions

1. What is thermal radiation?

2. What properties does it have?

3. What assumption was made by Planck to explain physical

laws of thermal radiation?

Theoretical Introduction

All matter, at any temperature, absorbs and emits electromag-

netic radiation, and across the full range of frequencies. The basic

physical emission mechanism is that atoms go into excited states

when the temperature of the matter they comprise is raised. They

radiate energy when returning to their normal states.

An ideal surface that absorbs all wavelengths of electromagnetic

radiation incident upon it is also the best possible emitter of elec-

tromagnetic radiation at any wavelength. Such an ideal surface

is called a blackbody, and the continuous- spectrum radiation

that it emits is called blackbody radiation. By 1900, this ra-

diation had been studied extensively, and the following had been

established.

The total intensity 𝑅* (the average rate of energy radiation per

unit surface area or average power per area) emitted from the

surface of an ideal radiator is proportional to the fourth power of

the absolute temperature. This relationship is called the Stefan-

Boltzmann law:

𝑅*(𝑇 ) = 𝜎𝑇 4, (3.12.1)
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where 𝜎 is a fundamental physical constant called the Stefan-

Boltzmann constant. In SI units, 𝜎 = 5.670400 · 10−8 W/(m2K4).

The total intensity 𝑅 emitted from a real surface is expressed

as

𝑅(𝑇 ) = 𝑒𝜎𝑇 4,

or in terms of power 𝑃 radiated from the surface 𝐴 of the object

(𝑅 = 𝑃/𝐴):

𝑃 = 𝐴𝑒𝜎𝑇 4, (3.12.2)

where 𝑒 is the emissivity, and 𝑇 is the surface temperature in

kelvins.

The value of 𝑒 can vary between zero and unity, depending on

the properties of the object surface. The emissivity is equal to the

absorptivity which is the fraction of the incoming radiation that

the surface absorbs.

If the object is a spiral of an incandescent lamp, then its power

equals

𝑃 = 𝐼𝑈, (3.12.3)

where 𝐼 is a current in the spiral and 𝑈 is its voltage.

Substituting Eq. (3.12.3) in Eq. (3.12.2), we receive the expres-

sion for experimental determination of the Stefan-Boltzmann con-

stant:

𝜎 =
𝐼𝑈

𝐴𝑒𝑇 4
. (3.12.4)

To determine temperature of a body based on thermal radiation

laws, pyrometers are used. First, using a pyrometer, a brightness

temperature is received, and then from the graph of a real temper-

ature versus brightness temperature, the real one is determined.

Description of the Equipment

A sketch of the disappearing filament pyrometer LOP-72 is

shown in Fig. 3.12.i.
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Here, 1 is an objective, 2 is an ocular, 3 is a pyrometric lamp

with the arc-shaped filament; 4, 5 are rheostats for rough and

precise adjustment of a filament heating; 6 is an absorption screen,

and 7 is a light filter.

The scheme of the experimental setup is shown in Fig. 3.12.ii.

A studied object is a tungsten spiral of the incandescent lamp

1. An electric circuit for the tungsten spiral heating consists of an

autotransformer 2 connected to the electrical network with voltage

𝑈 = 220 V, voltmeter 3, and ammeter 4. The electric circuit

of a pyrometer 5 includes: pyrometric lamp 6, stabilized power

supply of the pyrometric lamp 7, milliammeter 8 for measuring of

a filament current in the pyrometric lamp (the universal digital

voltmeter B7-22A is used as a milliammeter).

Step-by-step Procedure of the Experiment

1. Place the pyrometer before the object which temperature is

132



1
ob oc

~ 220 V ~ 220 V

2

3
4

7

5
6

8

Figure 3.12.ii

measured at the distance about 0.6 m.

2. Check the rheostats’ knobs 3 and 4 (see Fig. 3.12.ii) to be at

the leftmost position.

3. Turn on the pyrometer power supply and the digital voltmeter.

4. Increasing current with the rheostat 4, achieve a visible glow

of the pyrometric lamp filament, and with ocular 2, try to

obtain its sharp image.

5. Switch the autotransformer 2 on (see Fig. 3.12.i) and turning

its handle, make the incandescent lamp spiral (an object of

studying) white-hot. Rotating the tube of the objective 1 (see

Fig. 3.12.ii), try to get a sharp image of the spiral. Meanwhile,

the images of incandescent lamp spiral and pyrometric lamp

filament, observing with the ocular 2, should be equally sharp.

6. On the pyrometer, place a light filter handle to the position 1

and an absorption screen handle to the position 1.

7. Obtain the same brightness for the pyrometric lamp filament

and the tungsten spiral, i.e. disappearing of the filament

against the lamp spiral (an object of studying), with rheostats

3 and 4.
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Table 3.12.i

# 𝐼 , 𝑇𝑏, 𝑇 , 𝑇 , 𝑇 4, 𝑈 , 𝐼 , 𝐴, 𝑒 𝜎,

mA ∘C ∘C 103 K 1012 K4 V A m2 W/(m2K4)

1

2

8. With digital voltmeter, measure a current 𝐼𝑓 going through

the pyrometric lamp filament.

Warning. Current in the pyrometric lamp filament should

not exceed 460 mA.

Record this and further measurements in Table 3.12.i.

9. With the graph 𝐼𝑓 = 𝐹 (𝑇𝑏) which is attached, determine a

brightness temperature 𝑇𝑏 of a tungsten spiral of the incan-

descent lamp.

10. With the help of the following graph 𝑇 = 𝑓 (𝑇𝑏) determine a

real temperature 𝑇 of the tungsten spiral.

Convert it from Celsius degrees to Kelvins. To ease further cal-

culation, represent the temperature 𝑇 as

𝑇 = 1.??? · 103 К.

11. Measure a current in the tungsten spiral 𝐼 and its voltage 𝑈

with ammeter 4 and voltmeter 3 (see Fig. 3.12.i) .

12. Determine the Stefan-Boltzmann constant 𝜎 from Eq. (3.12.4).

(The emitting area of the tungsten spiral 𝐴 and its emissivity

𝑒 are given on the diagrams).

13. Change brightness of the incandescent lamp and repeat steps

7–12.

14. Determine an average value of the Stefan-Boltzmann constant.
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After-lab Questions

Case 1.
1. Formulate the definitions of the total intensity and the spectral

emittance. How do they relate to each other?
2. Draw the dependence graph of the thermal radiation energy

density on the temperature.
3. Formulate the Kirchhoff law for thermal radiation.
4. Problem. A 100-W incandescent light bulb has a cylindrical

tungsten filament 30.0 cm long, 0.40 mm in diameter, and

with an emissivity of 0.26. (a) What is the temperature of the

filament? (b) For what wavelength does the spectral emit-

tance of the bulb peak?
Answer: 2060 K, 1.41 𝜇m.

Case 2.
1. Formulate the Stefan-Boltzmann law.
2. Why is the temperature of a real body, determined in your

experiment with pyrometer, called a brightness temperature?

3. What body is called a blackbody? Do they exist really?
4. Problem. The shortest visible wavelength is about 400 nm.

What is the temperature of an ideal radiator whose spectral

emittance peaks at this wavelength?
Answer: 7250 K.

Case 3.
1. Formulate the Wien displacement law.
2. Show that for large values of 𝜆 the Planck formula agrees with

the Rayleigh formula.
3. Describe a model of a blackbody. Why can it be considered

in this way?
4. Problem. Two stars, both of which behave like ideal blackbod-

ies, radiate the same total energy per second. The cooler one
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has a surface temperature 𝑇 and 3.0 times the diameter of

the hotter star. What is the temperature of the hotter star in

terms of 𝑇 ?
Answer:

√
3𝑇 .

LABORATORY EXPERIMENT 3.13

STUDY OF THE PHOTOELECTRIC EFFECT

Purpose of the Experiment: to study the dependences of a

photocurrent on photocathode illuminance and voltage between

the photocathode and the anode.

Equipment and Accessories: cesium-antimonide photocell,

microammeter, voltmeter, rheostat, rectifier, incandescent lamp.

Basic Methodology. A photocell is illuminated by the light

of an incandescent lamp, and due to the photoelectric effect, pho-

tocurrent occurs. Using a proper circuit, and varying either illu-

minance of the photocathode or the voltage at the photocell, the

photocurrent is measured.

Recommended Pre-lab Reading: [1] 38.1, 38.2; [2] 40.1; [3]

40.1.

Pre-lab Questions
1. Metals contain free electrons. Can they leak out of the metal

freely? Why?
2. What effect is called a photoelectric one?
3. What nature, wave or quantum, does radiation exhibit in the

photoelectric effect?

Theoretical Introduction

At the end of the XIXth century, V. Galavax’s, A. Rigi’s (1888)

and A. Stoletov’s (1888–1890) experiments showed that under the
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light influence a metallic cathode emits negative charges. The ef-

fect of electrons emission from rigid and liquid substances when

light strikes a surface is called photoelectric effect. Schematic dia-

gram of the Stoletov’s experiment is shown in

Fig. 3.13.i.

Light from the source S falling on the metal cathode C causes a

current of emitted electrons. The current from cathode to anode A

(which has the shape of a grid) is measured by the galvanometer

(G). The photocurrent dependence on the voltage between the

anode and the cathode is shown in Fig. 3.13.ii and called volt-

ampere characteristic (illuminance 𝐸 = const).

S

A C

G

+ -

Figure 3.13.i

Experimentally, the following laws of photoelectric effect were

obtained:
∙ the maximum speed of photoelectrons depends on the fre-

quency of light and doesn’t depend on the intensity of light;

∙ for each material, no photoelectrons at all are emitted unless

the frequency of the light is greater than some minimum value
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called the threshold frequency. This minimum frequency 𝑓0 de-

pends on the material of the cathode and its surface condition;

∙ the number of electrons 𝑛, emitted from the cathode per unit

of time is proportional to the intensity of light, and photocur-

rent of saturation 𝐼𝑠 = 𝑛 𝑒 (see Fig. 3.13.ii).

Is

 0 U

I

Ust

Figure 3.13.ii

These laws can’t be understood without involving quantum

ideas. Einstein explained these phenomena by postulating that

electrons are emitted because electrons absorb individual photons.

The photons that correspond to radiation of frequency 𝑓 carry en-

ergy 𝐸𝑓 = ℎ𝑓 . If there is a minimum energy 𝜑 required to liberate

an electron, then no electrons will be emitted when ℎ𝑓 is less than

𝜑. When ℎ𝑓 exceeds 𝜑, the excess energy can go into kinetic en-

ergy of the emitted electrons. Thus, applying the conservation

energy law Einstein received:

ℎ𝑓 = 𝜑 +
𝑚𝑣2max

2
, (3.13.1)
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where ℎ is the Plank’s constant, 𝜑 is the work function (depends

on the material of the cathode and its surface condition), 𝑣max is

the maximum velocity which an electron is able to have, and 𝑚 is

the mass of an electron.

We can determine the maximum kinetic energy of emitted elec-

trons by making the potential of the anode relative to the cathode,

𝑉𝐴𝐶 , just negative enough so that the current stops. This occurs

at 𝑉𝐴𝐶 = −𝑈𝑠𝑡 where 𝑈𝑠𝑡 is called the stopping potential (see

Fig. 3.13.ii). As an electron moves from the cathode to the an-

ode, negative work −𝑒𝑈𝑠𝑡 – is done on the (negatively charged)

electron; the most energetic electron leaves the cathode with ki-

netic energy 𝐾max = 𝑚𝑣2max/2 and has a zero kinetic energy at the

anode. So, we have
𝑚𝑣2max

2
= 𝑒𝑈𝑠𝑡. (3.13.2)

Hence, by measuring the stopping potential, we can determine

the maximum kinetic energy with which electrons leave the cath-

ode. (We ignore any effects due to differences in the materials of

the cathode and anode.)

Greater intensity of falling radiation at a particular frequency

means a proportionally greater number of photons per second ab-

sorbed, and thus a proportionally greater number of electrons per

second emitted as well as the proportionally greater current.

Making an experiment, it’s handier to measure the dependence

of photocurrent on the illuminance of the photocathode which is

proportional to the intensity of falling radiation.

Illuminance 𝐸 of a point source of light is directly proportional

to the luminous intensity 𝐼𝑙 of the source and inversely propor-

tional to the squared distance 𝑟 between the source and the pho-

tocathode

𝐸 =
𝐼𝑙
𝑟2
. (3.13.3)
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Therefore, if the source is moved relative to the photocell, its

illuminance changes according to Eq. (3.13.3) and hence the pho-

tocurrent 𝐼 changes inversely proportional to the squared distance

𝑟 between the source and the photocell:

𝐼 = 𝑓

(︂
1

𝑟2

)︂
. (3.13.4)

Description of the Equipment

To research the laws of photoelectric effect, a vacuum cesium-

antimonide photocell with the central anode is used. The photocell

is a vacuum glass spherical vessel. A half of its internal surface

is covered by layers of antimony and cesium, and as a result, a

compound CsSb is formed which is used as a photocathode.

The photocell protected from the day light is placed on the

optical bench in front of the incandescent lamp which is considered

to be a point light source. The photocell is connected to the

electrical network through a rectifier. Photocell circuit consists of

a rheostat for changing the voltage on the photocell, a voltmeter

for measuring the voltage, and a microammeter for measuring the

photocurrent.

Step-by-step Procedure of the Experiment

Task 1. Dependence of the photocurrent on the illuminance of

the photocell.
1. Place the lamp and the photocell at the same heights. Move

the lamp to the photocell as close as possible (𝑟 = 15 . . . 20 cm).
2. Turn on the rectifier and give the voltage on the photocell

𝑈 = 150 V.
3. Turn on the power of the lamp.
4. While increasing the distance 𝑟 by 5 cm, take readings of

photocurrent 𝐼 versus 𝑟.

5. For every 𝑟 (m), calculate
1

𝑟2
.
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6. Plot a graph of photocurrent 𝐼 versus
1

𝑟2
, i. e. 𝐼 = 𝑓 (𝐸).

Task 2. Volt-ampere characteristics of photocell.

1. Place the lamp at the distance 25 cm from the photocell.
2. While increasing the voltage from 0 to 150 V by 10 V, take

readings of photocurrent 𝐼 versus 𝑈 .
3. Place the lamp at the distance 35 cm from the photocell (the

illuminance of the photocathode has changed), and repeat step

2.
4. Place the lamp at the distance 45 cm from the photocell (the

illuminance of the photocathode has changed again), and re-

peat step 2.
5. Plot graphs of volt-ampere characteristics, i. e. 𝐼 = 𝑓 (𝑈), of

photocell for different illuminances at the same diagram.

After-lab Questions

Case 1.
1. Formulate the laws of photoelectric effect.
2. How can they be explained?
3. What is the work function?
4. Problem. A clean silver surface (𝜑 = 4.7 eV) is exposed to the

ultraviolet light of wavelength 115 nm. What is the maximum

velocity of photoelectrons emitted from this surface?
Answer: 𝑣𝑚𝑎𝑥 = 1.08 · 106 m/s.

Case 2.
1. Write and explain the Einstein’s formula for photoelectric ef-

fect.
2. Why is there photocurrent if the voltage between the photo-

cathode and the anode is zero? (See Fig. 3.13.ii)
3. How can the maximum kinetic energy of the emitted electrons

be determined?
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4. Problem. When violet light with a wavelength of 400 nm falls

on a clean cesium surface, the maximum velocity of photo-

electrons is 6.5 · 105 m/s. What is the photoelectric threshold

wavelength for this cesium surface?
Answer: 640 nm.

Case 3.
1. Draw and explain the graph of volt-ampere characteristic, i.e.

𝐼 = 𝑓 (𝑈), for photoelectric effect. What is the photocurrent

of saturation equal to?
2. Why does the velocity of photoelectrons depend on the inci-

dent light frequency?
3. What is called the threshold frequency?
4. Problem. When monochromatic light with a wavelength of

310 nm falls on a surface, the stopping potential necessary

to stop emission of photoelectrons is 1.7 V. What is the work

function for this surface?
Answer: 𝜑 = 2.3 eV.
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