Применение FlowVision 3.09 для моделирования течения в ветроэнергетической установке, испытанной в NREL

П.М. Бывальцев, К.В. Кузнецов, И.В. Москалев, В.И. Похилко ООО «TECИС», Москва <u>www.flowvision.ru</u> Cloud Yu, Samwells Testing Inc., Тайвань www.samwells.com

Моделирование ВЭУ NREL с использованием FlowVision 3.09 Команда испытателей в NREL и экспериментальное оборудование NREL

NREL - National Renewable Energy Laboratory, NASA Ames Research Center.

* Нестационарные испытания вэтроэнергетической установки (ВЭУ, ветровая турбина) проводились в гигантской прямоугольной аэродинамический трубе: высота - **24.4 м**, ширина - **36.6 м**.

* Была создана научная группа советников из аэродинамиков и экспертов по моделированию ВЭУ по всему миру, чтобы определить условия испытаний и максимизировать отдачу от испытаний.

* Параллельно испытаниям велось слепое тестирование расчетных программ. (*)

(*) Simms D., Schreck S., Hand M., Fingersh L.J. NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements. Technical Report, June 2001

Основные параметры ВЭУ

- Число лопастей: 2 Диаметр ротора: 10.058 м
- Высота подъема установки: 12.192 m
- Скорость вращения: 71.63 об/мин
- Скорость ветра: от 6 м/с, в некоторых тестах от 5 м/с
- Регулирование мощности: срыв
- Номинальная мощность: 19.8 кВт
- Ориентация ротора: против ветра
- Направление вращения: против часовой стрелки (если смотреть по направлению ветра)

Геометрия ротора

Геометрия

FlowVision

- Сечения лопасти в плане: профиль NREL S809, масштабированный и повернутый
- Длина участка от центра вращения до начала переходного участка: 0.883 m
- Угол установки профиля на конце : 3° (испытания серии S)

Изображение прикорневых поверхностей (размеры в метрах)

Описание испытаний

Матрица серий испытаний была составлена для проведения исследований в 2-х направлениях. Одно направление связано с имитацией работы установки, другое – со сбором информации для изучением специфических явлений. В таблице они нанесены с пометками (F) и (P), соответственно

Ordinal Number	Test Sequence	Upwind/ Downwind	Rigid/ Teetered	Cone Angle (deg)	Yaw Angle (deg)	Slow Yaw Sweep	Blade Tip Pitch (deg)	Parked/ Rotating	RPM	Blade Press.	Probe Press.	Blade Tip	Day	NASA Run Number
в	Downwind Baseline (F)	Downwind	Teetered	3.4	Locked		3.0	Rotating	72.0	х	x	Baseline	1-4	11-14
č	Downwind Low Pitch (F)	Downwind	Teetered	3.4	Locked		0.0	Rotating	72.0	X	X	Baseline	1-4	11-14
D	Downwind High Pitch (F)	Downwind	Teetered	3.4	Locked		6.0	Rotating	72.0	Х	х	Baseline	1-4	11-14
E	Yaw Releases (P)	Downwind	Rigid	3.4	Locked / Free		3.0	Rotating	72.0	X	X	Baseline	5	15, 16
F	Downwind High Cone (F)	Downwind	Rigid	18.0	Locked		3.0	Rotating	72.0	Х	Х	Baseline	6	17
G	Upwind Teetered (F)	Upwind	Teetered	0.0	Locked		3.0	Rotating	72.0	Х	Х	Baseline	8-9	34, 38
н	Upwind Baseline (F)	Upwind	Rigid	0.0	Locked	х	3.0	Rotating	72.0	X	х	Baseline	9,11,12,15	39, 41-43, 50
1	Upwind Low Pitch (F)	Upwind	Rigid	0.0	Locked	Х	0.0	Rotating	72.0	Х	Х	Baseline	9,11,12	39, 41-43
J	Upwind High Pitch (F)	Upwind	Rigid	0.0	Locked	X	6.0	Rotating	72.0	X	X	Baseline	9,11,12	39, 41-43
K	Step AOA, Probes (P)	Upwind	Rigid	0.0	Locked at 0		Step & ramp	Rotating	72.0	X	X	Baseline	15	50
L	Step AOA, Parked (P)	Upwind	Rigid	0.0	Locked at 0		Step & ramp	Parked	0.0	X	X	Baseline	13	48
М	Transition Fixed (P)	Upwind	Rigid	0.0	Locked	Х	3.0	Rotating	72.0	X		Baseline	16	52
N	Sin AOA, Rotating (P)	Upwind	Rigid	0.0	Locked at 0		Sinusoidal	Rotating	72.0	Х	Х	Baseline	14,15	49, 50
0	Sin AOA, Parked (P)	Upwind	Rigid	0.0	Locked at 0		Sinusoidal	Parked	0.0	Х	Х	Baseline	13	44-47
Ρ	Wake Flow Vis. Upwind (P)	Upwind	Rigid	0.0	Locked		3.0, 12.0	Rotating	72.0			Visualize	10,11	40, 41
Q	Dynamic Inflow (P)	Upwind	Rigid	0.0	Locked at 0		Step	Rotating	72.0	Х	Х	Baseline	15	50
R	Step AOA, No Probes (P)	Upwind	Rigid	0.0	Locked at 0		Step & ramp	Rotating	72.0	Х		Baseline	16	52
S	Upwind, No Probes (F)	Upwind	Rigid	0.0	Locked	х	3.0	Rotating	72.0	X		Baseline	16,18	52, 54
Т	Upwind, 2 deg Pitch (F)	Upwind	Rigid	0.0	Locked at 0		2.0	Rotating	72.0	Х		Baseline	16,18	52, 54
U	Upwind, 4 deg Pitch (F)	Upwind	Rigid	0.0	Locked at 0		4.0	Rotating	72.0	X		Baseline	16,18	52, 54
V	Tip Plate (F)	Upwind	Rigid	0.0	Locked at 0		3.0	Rotating	72.0	X		Plate	18	54
W	Extended Blade (F)	Upwind	Rigid	0.0	Locked at 0		3.0	Rotating	72.0	X		Extended	18	54
Х	Elevated RPM (F)	Upwind	Rigid	0.0	Locked at 0		3.0	Rotating	90.0	Х		Baseline	19	55
3	Tower Wake Measure (P)	Downwind	Rigid	3.4	Locked		53-79	Parked	0.0	X	X	Baseline	6	18
4	Static Press. Cal (P)	Downwind	Teetered	3.4	Locked at 0		3.0	Rotating	72.0	Х	X	Baseline	4	14
5	Sweep Wind Speed (F,P)	Upwind	Rigid	0.0	Locked		3.0, 6.0	Rotating	72.0	X	Both	Baseline	11,19	43, 55
6	Shroud Wake Measure (P)	Downwind	Rigid	3.4	Locked		61-74	Parked	0.0	X	X	Baseline	7	19
7	Shroud Operating (P)	Downwind	Rigid	3.4	Locked		3.0	Rotating	72.0	X	X	Baseline	7	20
8	Downwind Sonics (F,P)	Upwind	Rigid	0.0	Locked		3.0	Rotating	72.0	Х		Baseline	17	53
9	Sonic Validation (P)	Upwind	Rigid	0.0	Locked		3.0	Rotating	72.0			Baseline	17	53

Table 1. Test Matrix Overview

(F) - Test conditions representative of field operation

(P) - Test conditions designed to explore specific flow physics phenomena

Описание испытаний

Матрица серий испытаний была составлена для проведения исследований в 2-х направлениях. Одно направление связано с имитацией работы установки, другое – со сбором информации для изучением специфических явлений. В таблице они нанесены с пометками (F) и (P), соответственно

Ordinal Number	Test Sequence	Upwind/ Downwind	Rigid/ Teetered	Cone Angle (deg)	Yaw Angle (deg)	Slow Yaw Sweep	Blade Tip Pitch (deg)	Parked/ Rotating	RPM	Blade Press.	Probe Press.	Blade Tip	Day	NASA Ru Number	'n
В	Downwind Baseline (F)	Downwind	Teetered	3.4	Locked		3.0	Rotating	72.0	Х	х	Baseline	1-4	11-14	
С	Downwind Low Pitch (F)	Downwind	Teetered	3.4	Locked		0.0	Rotating	72.0	Х	Х	Baseline	1-4	11-14	
D	Downwind High Pitch (F)	Downwind	Teetered	3.4	Locked		6.0	Rotating	72.0	Х	х	Baseline	14	11-14	
E	Yaw Releases (P)	Downwind	Rigid	3.4	Locked / Free		3.0	Rotating	72.0	Х	X	Baseline	5	15, 16	
F	Downwind High Cone (F)	Downwind	Rigid	18.0	Locked		3.0	Rotating	72.0	Х	X	Baseline	6	17	
G	Upwind Teetered (F)	Upwind	Teetered	0.0	Locked		3.0	Rotating	72.0	Х	Х	Baseline	8-9	34, 38	
Н	Upwind Baseline (F)	Upwind	Rigid	0.0	Locked	Х	3.0	Rotating	72.0	Х	X	Baseline	9,11,12,15	39, 41-43,	50
	Upwind Low Pitch (F)	Upwind	Rigid	0.0	Locked	Х	0.0	Rotating	72.0	Х	х	Baseline	9,11,12	39, 41-43	3
J	Upwind High Pitch (F)	Upwind	Rigid	0.0	Locked	Х	6.0	Rotating	72.0	Х	х	Baseline	9,11,12	39, 41-43	3
K	Step AOA, Probes (P)	Upwind	Rigid	0.0	Locked at 0		Step & ramp	Rotating	72.0	Х	X	Baseline	15	50	
L	Step AOA, Parked (P)	Upwind	Rigid	0.0	Locked at 0		Step & ramp	Parked	0.0	Х	х	Baseline	13	48	
М	Transition Fixed (P)	Upwind	Rigid	0.0	Locked	Х	3.0	Rotating	72.0	Х		Baseline	16	52	
N	Sin AOA, Rotating (P)	Upwind	Rigid	0.0	Locked at 0		Sinusoidal	Rotating	72.0	Х	Х	Baseline	14,15	49, 50	
0	Sin AOA, Parked (P)	Upwind	Rigid	0.0	Locked at 0		Sinusoidal	Parked	0.0	Х	Х	Baseline	13	44-47	
Ρ	Wake Flow Vis. Upwind (P)	Upwind	Rigid	0.0	Locked		3.0, 12.0	Rotating	72.0			Visualize	10,11	40, 41	
S	Upwi	nd, I	No F	ro	bes (F)		U	pwi	nd		F	ligid		

Table 1. Test Matrix Overview

S	S Upwind, No Probes (F)								Upwind				Rigid			0.
	U Upwind, 4	4 deg Pitch (F)	Upwind	Rigid	0.0	Locked at 0		4.0	Rotating	72.0	Х		Baseline	16,18	52, 54	
	V Tip Plate	(F)	Upwind	Rigid	0.0	Locked at 0		3.0	Rotating	72.0	Х		Plate	18	54	
	W Extended	Blade (F)	Upwind	Rigid	0.0	Locked at 0		3.0	Rotating	72.0	Х		Extended	18	54	
	X Elevated	RPM (F)	Upwind	Rigid	0.0	Locked at 0		3.0	Rotating	90.0	Х		Baseline	19	55	
	3 Tower Wa	ake Measure (P)	Downwind	Rigid	3.4	Locked		53-79	Parked	0.0	Х	Х	Baseline	6	18]
	4 Static Pre	ss. Cal (P)	Downwind	Teetered	3.4	Locked at 0		3.0	Rotating	72.0	Х	Х	Baseline	4	14	
	5 Sweep W	ind Speed (F,P)	Upwind	Rigid	0.0	Locked	1	3.0, 6.0	Rotating	72.0	Х	Both	Baseline	11,19	43, 55]
	6 Shroud W	/ake Measure (P)	Downwind	Rigid	3.4	Locked	1	61-74	Parked	0.0	X	X	Baseline	7	19	
	7 Shroud O	perating (P)	Downwind	Rigid	3.4	Locked]	3.0	Rotating	72.0	Х	X	Baseline	7	20]
	8 Downwine	d Sonics (F,P)	Upwind	Rigid	0.0	Locked		3.0	Rotating	72.0	Х		Baseline	17	53	
	9 Sonic Val	idation (P)	Upwind	Rigid	0.0	Locked		3.0	Rotating	72.0			Baseline	17	53]

(F) - Test conditions representative of field operation

(P) - Test conditions designed to explore specific flow physics phenomena

Описание серии испытаний S

Эта серия проведена при условиях: направление – против ветра, ротор без покачиваний и с 0° углом конусности. Скорость ветра - от 5 м/с до 25 м/с. Угол рыскания - от 0° до 180°. Угол установки профиля на конце - 3°

Uw		Yaw Angle																		
(m/s)	0	5	10	20	30	45	60	75	90	135	180	-135	-90	-75	-60	-45	-30	-20	-10	-5
5.0	0,1	0	0	0	0	0	0	0	0	0	0									
6.0	0,1		0		0															
7.0	0,1	0	0	0	0	0	0	0	0	0	0									
8.0	0,1		0		0															
9.0	0,1		0		0															
10.0	0,1	0	0	0	0	0	0	0	0	0	0									
11.0	0,1		0		0															
12.0	0,1		0		0															
13.0	0,1		0		0															
14.0	0,1		0		0															
15.0	0,1	0	0	0	0	0	0	0	0	0	0									
16.0	0,1		0		0															
17.0	0,1		0		0															
18.0	0,1		0		0															
19.0	0,1		0		0															
20.0	0,1	0	0	0																
21.0	0		0																	
22.0	0		0																	
23.0	0																			
24.0	2																			
25.0	1																			

Table C-18. Sequence S, Upwind, No Probes (F), 104 files of 30-second duration, 2 files of 6-minute duration

File Name Convention: SWWYYYYR where WW corresponds to the wind speed, Uw; YYYY corresponds to the yaw angle (M030=-30); R corresponds to the repetition digit. Each entry in the above table represents the repetition digit of the filename corresponding to that wind speed and yaw angle. Two additional files representing 6-minute duration, 360° yaw sweeps at 7 and 10 m/s respectively are S07YSU00 and S10YSU00.

Экспериментальные данные NREL

Wind Speed (m/s)

1801

1-Wind speed(mean)	2-Torque(mean)	3-Torque (Maximum)	4-Torque(Minimum)	5-Stand.Dev. for Torque	6-Stand. Dev. for Wind Speed	7- Turb intensity(%)	*Turbulent intensity is computed by
5.0385	293.0773	432.9061	104.4467	51.4834	0.1641	3.2569	
7.0163	801.2650	1044.7220	583.7277	71.4674	0.1181	1.6832	Turb Intensity (I)=
9.0133	1374.5872	1571.9269	1131.9087	71.1623	0.0946	1.0496	<i>u</i> ′
10.0471	1341.1021	1543.4984	1084.6403	72.9948	0.0826	0.8221	$I \equiv \frac{n}{100} \times 100\%$
11.0388	1323.1683	1649.6383	1030.2158	87.6305	0.0781	0.7075	U
13.0695	1308.6212	1523.1484	1054.5311	75.3614	0.0665	0.5088	where:
15.0982	1172.0354	1510.9124	818.3629	94.7514	0.0617	0.4087	\mathcal{U} = Stadnd. Dev. For Wind speed
17.1147	1057.5577	1270.2898	734.6348	76.5153	0.0586	0.3424	\overline{U} = mean value of Wind speed
20.1309	1109.6128	1339.0066	841.6244	74.8159	0.0533	0.2648	
25.1088	1489.7145	1760.1257	1215.6735	81.7590	0.0534	0.2127	<p.s> Stand. Dev= Standard deviation</p.s>

NREL Phase VI Rotor - (sequence, S)

Измерения параметров в испытаниях

□ Измеряются полное и статическое давление и температура на входе в трубу, полное и статическое давление в области испытаний, а затем рассчитываются полное давление, скорость ветра, плотность и температуру воздуха в каждом испытании (например, для серии \$05000000~\$25000000)

Figure 11. Wind tunnel and wind turbine pressure system diagram (not to scale)

	8-Test No.	9-RPM (mean)	10-Velocity(mean)	11- Turb intensity(%)	12-Air density (mean)	13-Wind tunnel temp(mean)	14-Wind Tunnel Total pressure(mean)	15- Viscosity@37.2796 C
1	S05000000	71.6851	5.0385	3.2569	1.2435	37.2796	101946.2734	1.9214e-5
2	S07000000	71.8667	7.0163	1.6832	1.2458	37.2796	101464.5781	1.9214e-5
3	S09000000	72.0981	9.0133	1.0496	1.2457	37.2796	101988.4844	1.9214e-5
4	S1000000	72.0962	10.0471	0.8221	1.2459	37.2796	101957.7109	1.9214e-5
5	S11000000	72.0988	11.0388	0.7075	1.2285	37.2796	101571.1953	1.9214e-5
6	S13000000	72.0940	13.0695	0.5088	1.2266	37.2796	101515.1328	1.9214e-5
7	S15000000	72.0619	15.0982	0.4087	1.2240	37.2796	101505.5313	1.9214e-5
8	S17000000	72.0071	17.1147	0.3424	1.2230	37.2796	101464.5781	1.9214e-5
9	S20000000	72.0088	20.1309	0.2648	1.2214	37.2796	101451.7656	1.9214e-5
10	S25000000	72.1622	25.1088	0.2127	1.2197	37.2796	101410.6484	1.9214e-5
11	Stand. Dev.	<0.008 RPM	<0.1m/s		<<0.003 Kg/m^3	<<0.0271 C	<260 Pa	

Молярный вес сухого воздухаг М = 0.0289644 кг/моль

*Descritpion: s05XXXXXX , S: test sequence , 05= wind speed, XXXXXXX is the definition for Yaw condition . All of the Yaw angle equal to "0" deg for present cases,

FlowVision

Слайд № 9

Моделирование ВЭУ NREL с использованием FlowVision 3.09

Полноразмерная геометрия ротора для моделирования

Расчетная область (половина цилиндра)

HowVisio

Влиянием соседних установок (загромождение стоек и взаимодействие следов) пренебрегаем, а рассматриваем только обтекание одной установки в соответствии с экспериментом

Сборка половины ротора

Постановка задачи: уравнения и допущения

- Уравнения Навье-Стокса для течений несжимаемого воздуха;
- k-ε AKN модель турбулентности для низких чисел Рейнольдса (Abe, K., Kondoh, T., Nagano, Y. (1995)); на входе задаем <u>малое</u> значение вихревой вязкости;
- Стенки ротора адиабатические (лопасть и гондола);
- Вся расчетная область вращается вместе с ротором;

• Высокопроизводительные параллельные вычисления на основе MPI технологии

Граничные условия

Лопасть ротора и гондола: стенка:

- Условия прилипания (пристеночные функции)
- условия для к и є для пристеночных функций

Построение сетки: начальная сетка

В общем, построение сетки состоит из двух шагов:

Шаг 1 – построение начальной сетки (в препроцессоре);

Шаг 2 – дальнейшее измельчение сетки (в процессе вычислений)

Построение сетки: дальнейшее измельчение

Дальнейшее измельчение ('адаптация сетки'):

Адаптация на граничных поверхностях

Особенности процесса при адаптации:

- Автоматическое измельчение (управление одними параметрами);
- Измельчение может быть выполнено пошагово (постепенно) в процессе вычислений

Моделирование ВЭУ NREL с использованием FlowVision 3.09 Качество сетки: результаты на сетках с различным количеством ячеек на уровнях

ΔMz=3%. В дальнейших расчетах была использована сетка с меньшим числом ячеек

Слайд № 17

FlowVision

Качество сетки: значения Y+

Слайд № 18

Результаты: динамика линии отрыва на спинке

Линия отрыва постепенно смещается вверх по потоку с увеличением скорости набегающего потока

WYISIOI

Результаты: динамика линии торможения потока на корытце

Линия торможения смещается вследствие увеличения угла атаки

FIOWVISION

Моделирование ВЭУ NREL с использованием FlowVision 3.09

Результаты: Возникновение и развитие отрывного пузыря на спинке с увеличением скорости ветра

Мгновенные распределения относительной скорости в плоскости сечения лопасти (63%Rmax)

Моделирование ВЭУ NREL с использованием FlowVision 3.09

Результаты: коэффициент давления в 5 сечениях лопасти для Vin=7м/с,13 м/с

Большие отклонения в Ср для нижней части лопатки можно приписать грубости сетки для этой части лопатки В расчетах с Vin=13 м/с для отрывных зон наблюдается нестационарность потока

Слайд № 22

Нестационарность отрывных зон (в расчетах)

Мгновенные распределения относительной скорости в плоскости 63% от Rmax в различные моменты времени

Сопоставление моментов вращения сил, действующих на ротор

- В целом результаты на сетке с 3 уровнями адаптации удовлетворительно следуют эксперименту (Δmax=18%)
- Результаты на сетке с 4 уровнями адаптации лучше описывают эксперимент для безотрывных режимов (5m/s 9 m/s)
- Использование FlowVision на сетках с Y+<100 (4 уровня адаптации) для потоков с протяженным отрывом ведет к результатам, значительно отличающимся от эксперимента (предположительно изза ограничений метода пристеночными функциями + сложная физика в пограничных слоях)

FlowVision

Моделирование ВЭУ NREL с использованием FlowVision 3.09

FlowVision в сравнении с программами, использованными NREL в слепом тестировании

Другие возможности FlowVision 3.09 для решения задачи

Технология скользящих поверхностей Технология приповерхностных сеток (OBL)

- Выбирается осесимметричная подобласть с ротором внутри
- Подобласть и ротор вращаются вместе
- Остальная часть области неподвижна
- Граничные условия не меняются
- Технология позволяет рассчитывать течения с ненулевым углом рыскания

- Строится дополнительная приповерхностная сетка
- Для двух разных сеток уравнения решаются отдельно
- Граничные условия для внешней части OBL-сетки берутся из решения на основной сетке
- На стенке между областями с различной сеткой осуществляется обмен(величина поток величины)

Сводные результаты

Технологии OBL-сеток и скользящих поверхностей воспроизводят измерения с такой же точностью, что и базовый метод. Поэтому они также могут применяться для решения подобного рода задач

Слайд № 27

FlowVision

Заключительные замечания

- Решена задача о течении в ветроэнергетической установке с использованием программного комплекса FlowVision 3.09. Получено удовлетворительное для инженерной практики совпадение расчетных и экспериментальных данных.
- Показано, что FlowVision 3.09 является эффективным инструментом для анализа работы ветроэнергетических установок. Расчет одного варианта на сетке с 1.4 млн. ячеек занимает около 1-2 суток (физическое время) на персональном компьютере с одним 4-х ядерным процессором с частотой 3.6 ГГц и требует 5.3 ГБ оперативной памяти. Оперативность программы делает расчеты доступными в процессе проектирования установок.
- Для получения удовлетворительного решения задачи необходимо, чтобы расчетная сетка удовлетворяла 2-м условиям:

(1) воспроизведение распределения давления должно быть достаточно хорошим;

(2) среднее значение Y+_av на лопасти ротора должно быть ограничено пределами Y+ =80-200 (Y+ =100-200 – для отрывных режимов)

СПАСИБО ЗА ВНИМАНИЕ

